## Contents

**Volume I**

**Preface** XI

1. **Introduction** 1  
   1.1 The Beginning 2  
   1.2 Subsequent Developments 5  
   1.3 The dc SQUID: A First Look 7  
   1.4 The rf SQUID: A First Look 12  
   1.5 Cryogenics and Systems 16  
   1.6 Instruments: Amplifiers, Magnetometers and Gradiometers 17  
   1.7 Applications 21  
   1.8 Challenges and Perspectives 24  
   1.9 Acknowledgment 26

2. **SQUID Theory** 29  
   2.1 Josephson Junctions 30  
   2.2 Theory of the dc SQUID 43  
   2.3 Theory of the rf SQUID 70

3. **SQUID Fabrication Technology** 93  
   3.1 Junction Electrode Materials and Tunnel Barriers 94  
   3.2 Low-temperature SQUID Devices 96  
   3.3 High-temperature SQUID Devices 107  
   3.4 Future Trends 118

4. **SQUID Electronics** 127  
   4.1 General 128  
   4.2 Basic Principle of a Flux-locked Loop 128  
   4.3 The dc SQUID Readout 137  
   4.4 The rf SQUID Readout 155  
   4.5 Trends in SQUID Electronics 165
## Contents

### 5 Practical DC SQUIDS: Configuration and Performance 171

5.1 Introduction 172
5.2 Basic dc SQUID Design 175
5.3 Magnetometers 186
5.4 Gradiometers 193
5.5 1/f Noise and Operation in Ambient Field 200
5.6 Other Performance Degrading Effects 208

### 6 Practical RF SQUIDs: Configuration and Performance 219

6.1 Introduction 220
6.2 Rf SQUID Magnetometers 220
6.3 Rf SQUID Gradiometers 236
6.4 Low-Frequency Excess Noise in rf SQUIDs 237
6.5 Response of rf SQUIDs to High-frequency Electromagnetic Interference 239
6.6 Characterization and Adjustment of rf SQUIDs 241
6.7 The rf SQUID versus the dc SQUID 244
6.8 Concluding Remarks and Outlook 246

### 7 SQUID System Issues 251

7.1 Introduction 254
7.2 Cryogenics 255
7.3 Cabling and Electronics 272
7.4 Data Acquisition and Rudimentary Signal Processing 289
7.5 Characterization, Calibration and Testing 292
7.6 Conditions Imposed on SQUID Systems by the Environment and Applications 309
7.7 Noise Suppression 315
7.8 Signal and Noise Implications for the SQUID System Design 335
7.9 Concluding Remarks and System Trends 344

### Appendix 1 357
Basic Properties of Superconductivity

### Appendix 2 367
Abbreviations, Constants and Symbols

### Index 383
Volume II

Preface XI

List of Contributors XV

8 SQUID Voltmeters and Amplifiers 1
J. Clarke, A. T. Lee, M. Mück and P. L. Richards

8.1 Introduction 3
8.2 Voltmeters 4
8.3 The SQUID as a Radiofrequency Amplifier 5
8.4 Microstrip SQUID Amplifier 20
8.5 SQUID Readout of Thermal Detectors 32
8.6 Nuclear Magnetic and Quadrupole Resonance and Magnetic Resonance Imaging 56
8.7 The Axion Detector 81

9 SQUIDs for Standards and Metrology 95
J. Gallop and F. Piquemal

9.1 Introduction 96
9.2 SQUIDs in Voltage Metrology 97
9.3 Cryogenic Current Comparator (CCC) 101
9.4 Other Current Metrological Applications of SQUIDs 123
9.5 Future Trends and Conclusion 129

10 The Magnetic Inverse Problem 139
E. A. Lima, A. Irimia and J. P. Wikswo

10.1 The Peculiarities of the Magnetic Inverse Problem 141
10.2 The Magnetic Forward Problem 145
10.3 The Magnetic Inverse Problem 168
10.4 Conclusions 254

11 Biomagnetism 269
J. Vrba, J. Nenonen and L. Trahms

11.1 Introduction 271
11.2 Magnetoencephalography 274
11.3 Magnetocardiography 321
11.4 Quasistatic Field Magnetometry 342
11.5 Magnetoneurography 346
11.6 Liver Susceptometry 351
11.7 Gastromagnetometry 356
11.8 Magnetic Relaxation Immunoassays 360
12 Measurements of Magnetism and Magnetic Properties of Matter 391
   R. C. Black and F. C. Wellstood
   12.1 Introduction 392
   12.2 The SQUID Magnetometer–Susceptometer 392
   12.3 Scanning SQUID Microscopy 409

13 Nondestructive Evaluation of Materials and Structures using SQUIDs 441
   H.-J. Krause and C. Donaldson
   13.1 Introduction 442
   13.2 Detection of Magnetic Moments 445
   13.3 Magnetic Flux Leakage Technique 448
   13.4 Static Current Distribution Mapping 452
   13.5 Eddy Current Technique 453
   13.6 Alternative Excitation Techniques 467
   13.7 Conclusion and Prospects 472

14 SQUIDs for Geophysical Survey and Magnetic Anomaly Detection 481
   T. R. Clem, C. P. Foley, M. N. Keene
   14.1 Introduction 483
   14.2 Magnetic Measurements in the Earth’s Field 484
   14.3 Operation of SQUIDs in Real World Environments 494
   14.4 Data Acquisition and Signal Processing 499
   14.5 Geophysical Applications of SQUIDs 504
   14.6 Magnetic Anomaly Detection Systems using SQUIDs 527
   14.7 Future Prospects 536

15 Gravity and Motion Sensors 545
   HoJ. Paik
   15.1 Introduction 546
   15.2 The Superconducting Accelerometer 547
   15.3 Superconducting Transducer for Gravitational-Wave Detectors 548
   15.4 Superconducting Gravity Gradiometers (SGGs) 554
   15.5 Applications of the SGG Technology 563
   15.6 Outlook 575

Appendix 581
   Physical Constants, Abbreviations and Symbols

Index 617