Handbook of Optical Systems

Edited by
Herbert Cross

Volume 1: Fundamentals of Technical Optics
Herbert Gross
Contents

Preface V

1 Introduction 1

2 Paraxial Imaging 5

2.1 General Remarks 7

2.1.1 Paraxial Approximation 7

2.1.2 Linear Collineation 9

2.1.3 Image Locations 10

2.1.4 Magnification 14

2.1.5 Lens Equation 25

2.1.6 Newtons Equation 19

2.1.7 Three-dimensional Systems 20

2.2 Single Surface 21

2.2.1 Refracting Plane Surface 21

2.2.2 Refractive Spherical Surface 22

2.2.3 Mirror Surface 23

2.3 Single Lens 24

2.3.1 Parameters of a Lens 24

2.3.2 Cardinal Elements 25

2.3.3 Thin Lens 28

2.3.4 Thick Lens 29

2.3.5 Graphical Image Construction 32

2.4 Multiple-component Systems 33

2.4.1 System Consisting of Two Thin Components 33

2.4.2 Systems Consisting of Several Thin Lenses 36

2.5 Invariants 36

2.5.1 Helmholtz-Lagrange Invariant 36

2.5.2 Abbe Invariant Q 39

2.5.3 Paraxial Invariant 39

2.5.4 Further Invariants 40

2.5.5 Matrix Form of the Helmholtz Invariant 40

2.6 Matrix Calculus 41
2.6.1	Paraxial ABCD Matrices	41
2.6.2	Properties of the Matrices	44
2.6.3	Matrices of Simple Components	45
2.6.4	Finite Imaging with an Afoal System	48
2.6.5	Decompositions of an ABCD Matrix	49
2.7	Matrices Describing a More General Geometry	51
2.7.1	Two-dimensional 3x3 Matrices	51
2.7.2	Centered 4x4 Matrices	54
2.7.3	General 5x5 Matrices	58
2.8	Literature	59
3	Interfaces	62
3.1	Basics	62
3.1.1	Boundary Conditions	62
3.1.2	The Law of Refraction	63
3.1.3	The Law of Reflection	66
3.2	The Fresnel Equations	67
3.2.1	Definition of the Amplitude Coefficients	67
3.2.2	Reflection	67
3.2.3	Transmission	69
3.2.4	Properties of the Fresnel Equations	69
3.2.5	Stokes Relations	72
3.2.6	Azimuthal Angle	74
3.2.7	Reflectivity and Transmirtivity	75
3.2.8	Phase Changes	79
3.2.9	Description of the Refraction in the k-Space	80
3.2.10	Reflection Losses in Optical Systems	82
3.3	Polarization Effects at Interfaces	84
3.3.1	Brewster Angle	84
3.3.2	Degree of Polarization	86
3.4	Evanescent Waves	88
3.4.1	Total Internal Reflection	88
3.4.2	Evanescent Surface Waves	92
3.4.3	Damped Total Internal Reflection	94
3.4.4	Frustrated Total Internal Reflection	95
3.5	Non-geometrical Effects at Reflection	96
3.5.1	The Goos-Haenchen Effect	96
3.5.2	Total Internal Reflection of a Gaussian Beam	100
3.6	Absorbing Media	102
3.6.1	Complex Refractive Index	102
3.6.2	Lambert-Beer Law	103
3.6.3	Reflection at an Absorbing Medium	104
3.6.4	Metals	105
3.6.5	Reflection at Metals	105
3.7	Literature	209
Contents

4 Materials 111
4.1 Basics 113
4.1.1 Introduction 113
4.1.2 Optical Parameters 113
4.1.3 Non-optical Properties 114
4.2 Dispersion 114
4.2.1 Definition 114
4.2.2 Wavelengths 116
4.2.3 Characterizing the Dispersion 117
4.2.4 Optical Crowns and Flints 118
4.2.5 Interpolation of the Refractive Index 120
4.2.6 Dispersion of the Group Velocity 123
4.2.7 Chromatic Coordinates According to Buchdahl 124
4.3 Relative Partial Dispersion 125
4.3.1 Definition 125
4.3.2 Line of Normal Dispersion 228
4.3.3 Glasses with Anomalous Partial Dispersion 230
4.3.4 Relative Partial Dispersion in the Glass diagram 232
4.3.5 Hoogland Diagram 133
4.4 Transmission 134
4.4.1 Transmission and Internal Transmission 234
4.4.2 Transmission Edge 236
4.4.3 Transmission of Glasses and Plastics 237
4.5 Glasses 239
4.5.1 General Remarks 239
4.5.2 Glass Diagram 239
4.5.3 Glass Ranges 242
4.5.4 Thermal Properties 243
4.5.5 Data Sheet 246
4.5.6 Mechanical Properties of Glass 247
4.5.7 Chemical Properties of Glass 249
4.5.8 Deliverable Forms of Glass 249
4.5.9 Practical Aspects of the Choice of Glass in Optical Design 249
4.5.10 Special Glasses 250
4.6 Crystals and Special Materials 252
4.6.1 Materials for IR and UV 152
4.6.2 Quartz 254
4.7 Plastics 257
4.7.1 General Properties 257
4.7.2 Optical Properties 258
4.7.3 Transmission 260
4.8 Gases 262
4.8.1 General Remarks 161
4.8.2 Air 262
4.9 Liquids and Cements 162
Contents

4.9.1 Water 162
4.9.2 Technical Liquids 163
4.9.3 Immersion Oils 166
4.9.4 Optical Cements 267
4.10 Metals 168
4.10.1 Optical Parameters 168
4.10.2 Reflectivity of Metallic Mirrors 169
4.11 Literature 171

5 Raytracing 173
5.1 The Meaning of Raytracing 174
5.2 Raytracing Scheme 174
5.3 Raytracing Formula Sets 178
5.3.1 General Remarks 178
5.3.2 Paraxial y-u-Method 178
5.3.3 Paraxial s-h-Method 179
5.3.4 Meridional S-U-Method 180
5.3.5 Meridional Q-U-Method 182
5.3.6 Set of Vector Formulas 182
5.3.7 Iterative Calculation of the Intersection Point for Aspherical Surfaces 186
5.4 Raytracing in Optical Systems 189
5.4.1 Description of the Geometry 189
5.4.2 Types of Surface 194
5.4.3 Particular Properties 206
5.4.4 Output Quantities 207
5.4.5 Errors 208
5.4.6 Apodization 208
5.4.7 Polarization Raytracing 209
5.5 Special Components 220
5.5.1 Ideal Lens 220
5.5.2 Raytracing in GRIN media 211
5.5.3 Raytracing for Diffractive Elements 215
5.5.4 Knife-edge Diffraction Model in Raytracing 219
5.6 Differential Rays 220
5.6.1 General Remarks 220
5.6.2 Coddington Equations 220
5.6.3 General Differential Rays 222
5.6.4 Ray Tubes 223
5.7 Non-sequential Raytracing 224
5.7.1 General Remarks 224
5.7.2 Monte-Carlo Raytracing 226
5.8 Literature 227
Contents

6 Radiometry 229
 6.1 Introduction 230
 6.1.1 General Remarks 230
 6.1.2 Definition of the Radiometric Quantities 230
 6.1.3 Photometric Quantities 232
 6.1.4 Radiometric and Photometric Quantities 233
 6.1.5 Solid Angle 233
 6.1.6 Differential Flux 235
 6.1.7 Fundamental Law of Radiometry 235
 6.1.8 Projection of the Irradiance 236
 6.1.9 Irradiance 237
 6.1.10 Spectral Densities of Quantities 237
 6.1.11 Energy, Power and Photons 238
 6.2 Lambertian Radiator 239
 6.2.1 Classical Lambertian Radiator 239
 6.2.2 General Lambertian Radiator 240
 6.3 Radiation Transfer 241
 6.3.1 General Remarks 241
 6.3.2 Point Source of Light 242
 6.3.3 Radiation Transfer between Surfaces 244
 6.3.4 Numerical Radiation Transfer 247
 6.4 Radiometry of Optical Systems 248
 6.4.1 Optical System 248
 6.4.2 Radiation Transport with Interaction 249
 6.4.3 Aplanatic Systems 250
 6.4.4 Natural Vignetting 252
 6.4.5 Radiometry in Real Optical Systems 259
 6.4.6 Ray Tube Model 260
 6.5 Description of Radiation Transport in the Phase Space 263
 6.5.1 Helmholtz - Lagrange Invariant 263
 6.5.2 Phase Space Coordinates 264
 6.5.3 Phase Space Representation of Radiation Transport 265
 6.6 Literature 267

7 Light Sources 269
 7.1 Introduction 271
 7.1.1 Classification 271
 7.1.2 Efficiency 271
 7.1.3 Electromagnetic Spectrum 273
 7.1.4 Standard Light Sources 275
 7.1.5 Daylight and Sunlight 276
 7.2 Thermal Radiators 278
 7.2.1 Plancks Formula 278
 7.2.2 Optical Efficiency 281
 7.2.3 Radiation Temperature 282
8.2.6 Directional Sensitivity 342
8.2.7 Detection of Color Signals 343
8.3 Special Types of Sensor 345
8.3.1 Classification 345
8.3.2 Photoconductive Detector 346
8.3.3 CCD Arrays 348
8.3.4 Avalanche Photodiodes 354
8.3.5 Photographic Film 354
8.4 Sampling 357
8.4.1 Fourier Transformation 357
8.4.2 Sampling Theorem 358
8.4.3 Sampling of a Band-limited Signal 362
8.4.4 Detector Sampling 362
8.5 Signal Processing 364
8.5.1 General Remarks 364
8.5.2 Point Operations 364
8.5.3 Nearest-neighbor Operations 365
8.5.4 Fourier Filter 365
8.5.5 Savitzky-Golay Filter 368
8.6 Noise 370
8.6.1 Introduction 370
8.6.2 Types of Noise 372
8.6.3 Frequency-Dependence of the Noise 374
8.6.4 Correction of the Background Noise 375
8.7 Special Methods of Detection 376
8.7.1 Heterodyne Detection 376
8.7.2 Lock-in Principle 377
8.8 Literature 378

9 Theory of Color Vision 379
9.1 Introduction 380
9.2 Color Vision of the Human Eye 380
9.2.1 Spectral Sensitivity of the Eye 380
9.2.2 Transmission of the Eye 383
9.2.3 Bezold Effect and Restimulation 385
9.2.4 Physiologic Chromatic Sensation 386
9.3 Phenomenological Theory of Color Vision 387
9.3.1 Grassmann's Basic Laws 387
9.3.2 Light and Body Color 388
9.3.3 Additive Color Mixture 390
9.3.4 Three-color Mixture 390
9.3.5 Maxwell's Color Triangle 391
9.4 Colorimetry 394
9.4.1 General Remarks 394
9.4.2 Spectral Matching Functions 394
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4.3</td>
<td>Conversion Matrices</td>
<td>398</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Standard Spectral Value Functions of the CIE Standard System</td>
<td>399</td>
</tr>
<tr>
<td>9.4.5</td>
<td>Normalized Color Coordinates</td>
<td>400</td>
</tr>
<tr>
<td>9.5</td>
<td>Color Triangle</td>
<td>402</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Basic Properties</td>
<td>402</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Complementary Colors</td>
<td>403</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Color Saturation</td>
<td>405</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Helmholtz Color Values</td>
<td>408</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Mixture of Colors in the Color Triangle</td>
<td>409</td>
</tr>
<tr>
<td>9.5.6</td>
<td>Classical Color Terms</td>
<td>410</td>
</tr>
<tr>
<td>9.5.7</td>
<td>Color Temperature</td>
<td>412</td>
</tr>
<tr>
<td>9.5.8</td>
<td>Brightness</td>
<td>414</td>
</tr>
<tr>
<td>9.5.9</td>
<td>Color Body</td>
<td>415</td>
</tr>
<tr>
<td>9.5.10</td>
<td>Color Differences</td>
<td>416</td>
</tr>
<tr>
<td>9.6</td>
<td>Alternative Basic Systems</td>
<td>417</td>
</tr>
<tr>
<td>9.6.1</td>
<td>RGB Primary Colors</td>
<td>417</td>
</tr>
<tr>
<td>9.6.2</td>
<td>IHS Color Representation According to Munsell</td>
<td>421</td>
</tr>
<tr>
<td>9.6.3</td>
<td>(u'v')-Chromatiriry Chart</td>
<td>423</td>
</tr>
<tr>
<td>9.7</td>
<td>Literature</td>
<td>424</td>
</tr>
<tr>
<td>10</td>
<td>Optical Systems</td>
<td>425</td>
</tr>
<tr>
<td>10.1</td>
<td>Special Properties of Lenses</td>
<td>426</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Bending of Lenses</td>
<td>426</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Position Parameter</td>
<td>429</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Ideal Lens</td>
<td>430</td>
</tr>
<tr>
<td>10.1.4</td>
<td>Volume of a Lens</td>
<td>431</td>
</tr>
<tr>
<td>10.2</td>
<td>Special Rays in Optical Systems</td>
<td>432</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Numerical Aperture and Stop Number</td>
<td>432</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Canonical Coordinates</td>
<td>434</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Bundles and Ray Fans</td>
<td>438</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Special Rays</td>
<td>439</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Principal Planes</td>
<td>441</td>
</tr>
<tr>
<td>10.3</td>
<td>Pupils</td>
<td>442</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Diaphragms</td>
<td>442</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Definition of Pupils</td>
<td>444</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Spherical Pupils</td>
<td>446</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Pupil Sampling</td>
<td>448</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Vignetting</td>
<td>452</td>
</tr>
<tr>
<td>10.3.6</td>
<td>Variable Pupil Position</td>
<td>454</td>
</tr>
<tr>
<td>10.3.7</td>
<td>Special Stop Positions</td>
<td>455</td>
</tr>
<tr>
<td>10.3.8</td>
<td>Interlinked Bundles</td>
<td>458</td>
</tr>
<tr>
<td>10.3.9</td>
<td>Perspective</td>
<td>458</td>
</tr>
<tr>
<td>10.4</td>
<td>Delano Diagram</td>
<td>463</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Definition</td>
<td>463</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Properties of the Delano Diagram</td>
<td>464</td>
</tr>
</tbody>
</table>
10.4.3 Examples 468
10.4.4 Vignetting 472
10.5 Special Aspects 474
10.5.1 Curved Objects 474
10.5.2 Scheimpflug Imaging 475
10.5.3 Anamorphic Imaging 479
10.5.4 Introduction of thick lenses 480
10.6 Literature 483

11 Aberrations 485
11.1 General Considerations 486
11.2 Description of Aberrations 487
11.3 Ray Aberrations 490
11.3.1 Longitudinal Aberrations 490
11.3.2 Transverse Aberrations 491
11.3.3 Spot Diagrams 492
11.3.4 Caustics 493
11.3.5 Seidel Aberrations 494
11.4 The Sine Condition 495
11.5 Wave Aberrations 497
11.5.1 Definition 497
11.5.2 Tilt 499
11.5.3 Defocus 500
11.5.4 Zernike Polynomials 501
11.6 Spherical Aberration 506
11.6.1 Introduction 506
11.6.2 Aplanatic Surfaces 507
11.6.3 Aplanatic Lenses 509
11.7 Astigmatism 510
11.8 Field Curvature 511
11.8.1 Image Surfaces 511
11.8.2 Petzval Theorem 523
11.9 Coma 524
11.10 Distortion 526
11.11 Chromatic Longitudinal Aberrations 528
11.12 Chromatic Transverse Aberrations 520
11.13 Literature 522

12 Wave Optics 523
12.1 Basic Principles 524
12.1.1 Wave Equation 524
12.1.2 TEA and LPIA Approximations for Thin Components 525
12.1.3 Kirchhoff Integral 527
12.1.4 Fresnel Approximation 530
12.1.5 Fraunhofer Integral 532
Contents

12.1.6 Fresnel Number 532
12.1.7 Diffraction of an Aperture 533
12.1.8 Paraxial Approximation 535
12.1.9 Model Approximations for the Description of Optical Systems 536
12.1.10 Spot Model Calculations 538
12.2 Point-spread Function 539
12.2.1 Ideal Point Image 539
12.2.2 Scaling Factors 542
12.2.3 Transverse Airy Distribution 543
12.2.4 Axial Distribution 545
12.2.5 Point-spread Function and Aberrations 546
12.2.6 Fourier Theory of Image Formation 548
12.3 Spatial Frequency and Expansion in Plane Waves 548
12.3.1 Plane Wave Representation 549
12.3.2 Phase Effect of a Lens 550
12.3.3 Resolutions Model 551
12.3.4 4-f-Fourier Model 554
12.3.5 Complete 6-f-Fourier Model 557
12.3.6 Coherent Image Formation 559
12.3.7 Incoherent Image Formation 560
12.3.8 Transfer Functions 562
12.3.9 Definition 562
12.4 OTF of Ideal Systems 564
12.4.1 Contrast Transfer 565
12.4.2 Sagittal and Tangential Structures 566
12.5 Literature 568

13 Piano-optical Components
13.1 Plane-parallel plates 571
13.1.1 Beam Displacement 571
13.1.2 Aberrations 572
13.1.3 Plane-parallel Plate in a Convergent Beam 574
13.1.4 Reflections at Plane-parallel Plates 576
13.2 Dispersion Prisms 576
13.2.1 General Considerations 577
13.2.2 Dispersion by a Prism 578
13.2.3 Thin-prism Approximation 579
13.2.4 Symmetric Prisms 580
13.2.5 Prism Magnification 580
13.2.6 Astigmatism of a Wedge Prism 582
13.2.7 Curved Spectral Lines Produced by a Prism 582
13.2.8 Variable-angle Prisms 583
13.2.9 Achromatic Prism Pairs 584
13.2.10 Direct-vision Prisms 585
13.2.11 Double Amici Prisms 586
14.4.1 Ewald Model of the Grating Diffraction 669
14.4.2 Rectangular Amplitude Grating 671
14.4.3 Grating Structure Function 672
14.4.4 Fourier Optics of the Blazed Grating 672
14.5 Transmission Gratings 673
14.5.1 Blaze Condition 673
14.5.2 Carpenter Prisms 674
14.5.3 Diffractive Lenses 675
14.6 Types of Grating 677
14.6.1 Classification 677
14.6.2 Sine Phase Gratings 679
14.6.3 Laminary Reflection Gratings 680
14.6.4 Echelette Gratings 681
14.6.5 Ronchi Gratings 682
14.6.6 Damman Gratings 684
14.7 Gratings in Image Formation Systems 686
14.8 Diffraction by a Grating in the General Case 688
14.8.1 Non-paraxial Diffraction by a Grating 688
14.8.2 Conical Diffraction by a Grating 690
14.9 Literature 692

15 Special Components 693
15.1 Aspherical Devices 695
15.1.1 Introduction 695
15.1.2 Conic Sections 695
15.1.3 Polynomial Aspherical Surfaces 700
15.1.4 Conical Surfaces 703
15.1.5 Parameters for Aspherical Surfaces 704
15.2 Gradient-index Lenses 705
15.2.1 Parabolic Lateral Gradient-index 705
15.2.2 Axial Linear Gradient-index Media 707
15.2.3 Gradium Media 708
15.2.4 Spherically Corrected Gradient-index Lenses 711
15.3 Diffusing Disks 714
15.3.1 Description of the Effect of a Diffusing Disk 714
15.4 Cylinder Lenses 717
15.5 Simple Cylinder Lenses 717
15.5.1 Rotatable Pair of Cylinder Lenses 717
15.5.2 Alvarez Lens 728
15.6 Dynamic Light Modulators 719
15.6.1 General Remarks 719
15.6.2 Digital Mirror Device 720
15.6.3 Liquid Crystal Devices 722
15.7 Fresnel Lenses 729
15.7.1 Principle 729
15.7.2 Basic Equations 730
15.7.3 Total Internal Reflection 731
15.7.4 Aberrations 732
15.7.5 Stray Light 733
15.7.6 Applications 734
15.7.7 Radiometric Aspects 735
15.8 Light Pipes 737
15.8.1 Light-guiding Rods 737
15.8.2 Slab Homogenizer 738
15.8.3 Tapers 747
15.9 Axicons 751
15.9.1 Refractive Axicons 751
15.9.2 Refractive Axicon with Lens 752
15.9.3 Reflective Axicons 753
15.9.4 Axicon for an Axial Profile Formation 755
15.10 Literature 757

16 Optical Measurement and Testing Techniques 759
16.1 Overview 761
16.2 Measurement of the Focal Length 761
16.2.1 Measurement with a Collimator 761
16.2.2 Gauss Method 762
16.3 Measurement of Angles 763
16.3.1 Autocollimator 763
16.3.2 Interferometric Test of Prism Angles 764
16.3.3 Alignment Telescope 768
16.4 Centering 769
16.4.1 Measuring Centering in Reflection 769
16.4.2 Measuring Centering in Transmission 770
16.4.3 Interference Method 771
16.5 Measuring the Index of Refraction 773
16.5.1 Refractometer 773
16.5.2 Toeplers Schlieren Method 775
16.6 Surface-shape Measurement 776
16.6.1 Triangulation 776
16.6.2 Fringe Projection 776
16.6.3 Optical Coherence Tomography 778
16.7 Testing of Surface Radii and Shapes 780
16.7.1 Newton Interferometer 780
16.7.2 Twyman-Green Interferometer 782
16.7.3 Fizeau Interferometer 784
16.7.4 Evaluation of the Fringes 785
16.8 Measuring Wavefronts 786
16.8.1 Hartmann-Shack Wavefront Sensor 786
16.8.2 Hartmann Test 790
16.9 Measurement of the Optical Transfer Function 793
16.9.1 General Considerations 793
16.9.2 Measurement by Edge Imaging 794
16.9.3 Measurement by Line Imaging 796
16.9.4 Measurement of Grating Structures 797
16.10 Beam-quality Measurement 799
16.10.1 Overview 799
16.10.2 Knife-edge Method 800
16.10.3 Scanning-slit Method 802
16.10.4 Ronchi Test 803
16.11 Coherence Measurement 807
16.11.1 Youngs Experiment 807
16.12 Polarization Measurement 808
16.13 Stray-light Measurement 810
16.14 Color Measurement 811
16.14.1 Overview 811
16.14.2 Spectral Photometry 812
16.15 Literature 813

Index 815