Vehicle-Bridge Interaction Dynamics

With Applications to High-Speed Railways

Y. B. Yang
National Taiwan University, Taiwan

J. D. Yau
Tamkang University, Taiwan

Y. S. Wu
Sinotech Engineering Consultants, Ltd., Taiwan
Contents

Preface xv

Acknowledgments xxii

List of Symbols xxiii

1. Introduction 1
 1.1 Major Considerations 1
 1.2 Vehicle Models 5
 1.3 Bridge Models 9
 1.4 Railway Bridges and Vehicles 12
 1.5 Methods of Solution 15
 1.6 Impact Factor and Speed Parameter 19
 1.7 Concluding Remarks 22

Part I Moving Load Problems 25

2. Impact Response of Simply-Supported Beams 27
 2.1 Introduction 27
 2.2 Simple Beam Subjected to a Single Moving Load 30
 2.3 Impact Factor for Midpoint Displacement 36
 2.4 Impact Factor for Midpoint Bending Moment 40
 2.5 Impact Factor for End Shear Force 43
 2.6 Simple Beam Subjected to a Series of Moving Loads 45
4.5 Field Measurement of Vibration of Railway Bridges .. 118
4.6 Concluding Remarks ... 123

5. Curved Beams Subjected to Vertical and Horizontal Moving Loads 125
 5.1 Introduction ... 125
 5.2 Governing Differential Equations ... 127
 5.3 Curved Beam Subjected to a Single Moving Load 129
 5.3.1 Vertical Moving Load ... 129
 5.3.2 Horizontal Moving Load ... 135
 5.4 Unified Expressions for Vertical and Radial Vibrations 138
 5.5 Solutions for Multi Moving Loads .. 140
 5.6 Conditions of Resonance and Cancellation 143
 5.7 Numerical Examples .. 144
 5.7.1 Comparison of Analytic with Finite Element Solutions 144
 5.7.2 Phenomenon of Cancellation Under Single or Multi Moving Masses 146
 5.7.3 Phenomenon of Resonance Under Multi Moving Masses 149
 5.7.4 I–S Plot — Impact Effect Caused by Moving Loads 150
 5.8 Concluding Remarks .. 152

Part II Interaction Dynamics Problems .. 153

6. Vehicle–Bridge Interaction Element Based on Dynamic Condensation 155
 6.1 Introduction ... 155
 6.2 Equations of Motion for the Vehicle and Bridge 157
 6.3 Element Equations in Incremental Form .. 161
 6.4 Equivalent Stiffness Equation for Vehicles 163
 6.5 Vehicle–Bridge Interaction Element ... 165
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>Incremental Dynamic Analysis with Iterations</td>
<td>169</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Equivalent Stiffness Equations for VBI System</td>
<td>169</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Procedure of Iterations</td>
<td>171</td>
</tr>
<tr>
<td>6.7</td>
<td>Numerical Verification</td>
<td>175</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Simple Beam Subjected to Moving Sprung Mass</td>
<td>176</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Simple Beam Subjected to Moving Train</td>
<td>179</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Free-Fixed Beam with Various Models for Moving Vehicles</td>
<td>180</td>
</tr>
<tr>
<td>6.8</td>
<td>Parametric Studies</td>
<td>182</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Models for Bridge, Train and Rail Irregularities</td>
<td>183</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Moving Load versus Sprung Mass Model</td>
<td>184</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Effect of Rail Irregularities</td>
<td>186</td>
</tr>
<tr>
<td>6.8.4</td>
<td>Effect of Ballast Stiffness</td>
<td>188</td>
</tr>
<tr>
<td>6.8.5</td>
<td>Effect of Vehicle Suspension Stiffness</td>
<td>191</td>
</tr>
<tr>
<td>6.8.6</td>
<td>Effect of Vehicle Suspension Damping</td>
<td>194</td>
</tr>
<tr>
<td>6.9</td>
<td>Concluding Remarks</td>
<td>196</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>199</td>
</tr>
<tr>
<td>7.2</td>
<td>Equations of Motion for the Vehicle and Bridge</td>
<td>202</td>
</tr>
<tr>
<td>7.3</td>
<td>Rigid Vehicle-Bridge Interaction Element</td>
<td>207</td>
</tr>
<tr>
<td>7.4</td>
<td>Equations of Motion for the VBI System</td>
<td>213</td>
</tr>
<tr>
<td>7.5</td>
<td>Numerical Studies</td>
<td>217</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Simple Beam Traveled by a Two-Axle System</td>
<td>217</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Simple Beam Traveled by a Train Consisting of Five Identical Cars</td>
<td>219</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Riding Comfort in the Presence of Track Irregularities</td>
<td>223</td>
</tr>
</tbody>
</table>
7.5.4 Effect of Elasticity of the Suspension System 223
7.5.5 Effect of Damping of the Suspension System 226
7.5.6 Effect of Track Irregularity ... 229

7.6 Concluding Remarks ... 229

8. Modeling of Vehicle–Bridge Interactions by the Concept of Contact Forces 233

8.1 Introduction ... 233
8.2 Vehicle Equations and Contact Forces .. 236
8.3 Solution of Contact Forces from Vehicle Equations 240
8.4 VBI Element Considering Vertical Contact Forces Only 242
8.5 VBI Element Considering General Contact Forces 244
8.6 System Equations and Structural Damping 245
8.7 Procedure of Time-History Analysis for VBI Systems 247
8.8 Numerical Examples and Verification .. 249
8.8.1 Cantilever Beam Subjected to a Moving Load 249
8.8.2 Cantilever Beam Subjected to a Moving Mass 252
8.8.3 Simple Beam Subjected to a Moving Sprung Mass 254
8.8.4 Simple Beam Subjected to a Moving Rigid Bar Supported by Spring-Dashpot Units ... 257
8.8.5 Bridge Subjected to a Vehicle in Deceleration 262
8.8.6 Bridges Subjected to a Train Consisting of 10 Identical Cars 266

8.9 Concluding Remarks ... 268
9. Vehicle-Rails-Bridge Interaction —
 Two-Dimensional Modeling 271

9.1 Introduction .. 271
9.2 Train and Bridge Models and Minimal
 Bridge Segment ... 273
9.3 Vehicle's Equations of Motion and
 Contact Forces .. 277
9.4 Rails and Bridge Element Equations 279
 9.4.1 Central Finite Rail (CFR) Element and
 Bridge Element ... 279
 9.4.2 Left Semi-Infinite Rail (LSR) Element 283
 9.4.3 Right Semi-Infinite Rail (RSR) Element 285
9.5 VRI Element Considering Vertical Contact
 Forces Only .. 286
9.6 VRI Element Considering General
 Contact Forces ... 287
9.7 System Equations and Structural Damping 289
9.8 Shift of Bridge Segment and Renumbering of
 Nodal Degrees of Freedom 292
9.9 Verification of Proposed Procedure 293
9.10 Numerical Studies ... 295
 9.10.1 Steady-State Responses of the Train,
 Rails and Bridge .. 296
 9.10.2 Impact Response of Rails and Bridge
 Under Various Train Speeds 299
 9.10.3 Response of Train to Track Irregularity
 and Riding Comfort of Train 303
 9.10.4 Effect of the Track System 307
9.11 Concluding Remarks ... 308

10. Vehicle-Rails-Bridge Interaction —
 Three-Dimensional Modeling 311

10.1 Introduction .. 311
10.2 Three-Dimensional Models for Train, Track
 and Bridge ... 313
10.3 Vehicle Equations and Contact Forces 314
10.4 Equations for the Rail and Bridge Elements 326
10.4.1 Central Finite Rail (CFR) Element for Track A 327
10.4.2 Central Finite Rail (CFR) Element for Track B 332
10.4.3 The Bridge Element .. 334
10.4.4 Left Semi-Infinite Rail (LSR) Element for Track A 337
10.4.5 Right Semi-Infinite Rail (RSR) Element for Track A 340
10.4.6 Left Semi-Infinite Rail (LSR) Element for Track B 342
10.4.7 Right Semi-Infinite Rail (RSR) Element for Track B 343
10.5 VRI Element Considering Vertical and Lateral Contact Forces .. 343
10.6 VRI Element Considering General Contact Forces 347
10.7 System Equations and Structural Damping 349
10.8 Simulation of Track Irregularities 354
10.9 Verification of the Proposed Theory and Procedure 361
10.10 Dynamic Characteristics of Train–Rails–Bridge Systems 366
10.10.1 Properties of the Railway Vehicles and Bridge 366
10.10.2 Natural Frequencies of the Railway Vehicles and Bridge 367
10.10.3 Dynamic Interactions Between the Train and Bridge 367
10.10.4 Train–Rails–Bridge Interaction Considering Track Irregularities 372
10.11 Dynamic Effects Induced by Trains at Different Speeds 384
10.12 Response Induced by Two Trains in Crossing 390
10.13 Criteria for Derailment and Safety Assessment of Trains .. 399
10.14 Concluding Remarks ... 406

11. Stability of Trains Moving over Bridges Shaken by Earthquakes 409

11.1 Introduction .. 409
11.2 Analysis Model for Train–Rails–Bridge System ... 411
11.3 Railway–Bridge System with Ground Motions ... 414
 11.3.1 Central Finite Rail (CFR) Element for Track A 414
 11.3.2 Central Finite Rail (CFR) Element for Track B 418
 11.3.3 Bridge Element .. 419
 11.3.4 Left Semi-Infinite Rail (LSR) Element for Tracks A and B 420
 11.3.5 Right Semi-Infinite Rail (RSR) Element for Tracks A and B 423
11.4 Method of Analysis ... 424
11.5 Description of Input Earthquake Records 426
11.6 Train Resting on Railway Bridge under Earthquake 435
 11.6.1 Responses of Bridge and Train Car 436
 11.6.2 Contact Forces between Wheels and Rails 443
 11.6.3 Maximum YQ Ratio for Wheelsets in Earthquake 446
 11.6.4 Stability of an Idle Train under Earthquakes of Various Intensities 448
11.7 Trains Moving over Railway Bridges under Earthquakes 450
 11.7.1 Responses of Bridge and Train Car 450
 11.7.2 Maximum YQ Ratio for Moving Trains in Earthquake 460
 11.7.3 Stability Assessment of Moving Trains in Earthquake 460
11.8 Concluding Remarks ... 470
Appendix A Derivation of Response Function \(\bar{P}_1 \)
in Eq. (2.55) 473

Appendix B Newmark's \(\beta \) Method 477

Appendix C Vertical Frequency of Vibration of Curved Beam 481

Appendix D Horizontal Frequency of Vibration of Curved Beam 483

Appendix E Derivation of Residual Vibration for Curved Beam in Eq. (5.53) 485

Appendix F Beam Element and Structural Damping Matrix 489
 F.1 Equation of Motion for Beam Element . . . 489
 F.2 Structural Damping Matrix 493

Appendix G Partitioned Matrices and Vector for Vehicle, Eq. (9.4) 497

Appendix H Related Matrices and Vectors for CFR Element 501

Appendix I Related Matrices and Vectors for 3D Vehicle Model 503

Appendix J Mass and Stiffness Matrices for Rail and Bridge Elements 507
 J.1 Mass and Stiffness Matrices of the CFR Element for Both Tracks 507
 J.2 Mass and Stiffness Matrices of the Bridge Element . 508
J.3 Mass and Stiffness Matrices for the LSR Element 509
J.4 Mass and Stiffness Matrices of the RSR Element 510
J.5 Related Matrices and Vectors for the Rail Elements 510

References 513

Subject Index 527