ELEMENTS OF SOIL PHYSICS

P. KOOREVAAR, G. MENELIK and C. DIRKSEN

Department of Soil Science and Plant Nutrition, Agricultural University of Wageningen, Wageningen, The Netherlands
CONTENTS

Preface V
List of symbols XI

1 Composition and physical properties of soils 1

1.1 Composition of soils 1
1.1.1 Components and phases 1
1.1.2 Texture and structure 4
1.1.3 Porosity 6
1.1.4 Density 7
1.1.5 Water content 9
1.1.6 Organic matter 10

1.2 Specific surface area 11
1.2.1 Regularly shaped particles 12
1.2.2 Plate-shaped particles 12
1.2.3 Soils 14

1.3 Interaction between solid and liquid phases 15
1.3.1 Clay minerals 15
1.3.2 Surface charge of clay minerals 16
1.3.3 Adsorption and dissociation of counterions 16
1.3.4 Swelling and shrinkage 20

1.4 Interaction between solid phase particles 21
1.4.1 Plate condensation 21
1.4.2 Flocculation 22
1.4.3 Cementing agents 23
1.4.4 Soil structure and structural stability 23

1.5 Suggested literature 25
1.6 Answers Chapter 1 26

2 Equilibrium in force fields and theory of potentials 37

2.1 Equilibrium conditions in force fields 37
2.1.1 Forces and equilibria 37
2.1.2 Force fields 39
2.1.3 Forces and pressures in static equilibrium 40
2.1.4 Sedimentation velocity as mechanical equilibrium 44

2.2 Potentials in static equilibrium 46
2.2.1 Potential theory 47
2.2.2 Hydrostatic equilibrium in the gravitational field. Hydraulic potential 49
2.2.3 Potential on volume basis. Pressure equivalent
2.2.4 Potential on weight basis. Head equivalent
2.2.5 Equilibrium of a compressible medium in the gravitational field
2.3 SUGGESTED LITERATURE
2.4 ANSWERS CHAPTER 2

3 Static equilibria in soils

3.1 HYDROSTATIC EQUILIBRIUM
3.1.1 Binding of water by soils
3.1.2 Binding of water in a capillary
3.1.3 Hydraulic potential of soil water at static equilibrium
3.1.4 The piezometer and tensiometer
3.1.5 Water retention (pF curve)
3.1.6 Equipment for determining soil water characteristics
3.1.7 Potentials of the pure component water, Vapour equilibrium
3.1.8 Criteria for equilibrium of the component water
3.1.9 Osmotic binding of water in the double layer
3.2 STATIC EQUILIBRIUM OF THE SOIL SYSTEM
3.2.1 Soil pressure
3.2.2 Intergranular pressure
3.3 SUGGESTED LITERATURE
3.4 ANSWERS CHAPTER 3

4 General concepts of transport processes in soil

4.1 FLOW OF WATER
4.1.1 Movement and accumulation
4.1.2 Driving force. Hydraulic potential gradient
4.1.3 Flux density
4.1.4 Flux density equation
4.1.5 Transport coefficient. Hydraulic conductivity
4.1.6 Continuity equation
4.1.7 Differential capacity
4.1.8 Diffusivity
4.1.9 General flow equation
4.1.10 Initial and boundary conditions
4.2 GAS DIFFUSION
4.3 HEAT CONDUCTION
4.4 SUGGESTED LITERATURE
4.5 ANSWERS CHAPTER 4
5 Flow of water in soil
5.1 INTRODUCTION
5.2 FLOW OF WATER IN SATURATED SOIL
 5.2.1 Saturated hydraulic conductivity
 5.2.2 Intrinsic permeability
 5.2.3 Steady downward flow in homogeneous soil
 5.2.4 Steady downward flow in layered soil
 5.2.5 Steady upward flow
 5.2.6 Intergranular pressure
5.3 FLOW OF WATER IN UNSATURATED SOIL
 5.3.1 Unsaturated hydraulic conductivity
 5.3.2 Steady flow of water in unsaturated soil
 5.3.2.1 Steady upward flow
 5.3.2.2 Steady downward flow
 5.3.3 Nonsteady flow of water in unsaturated soil
 5.3.3.1 Analysis of H profiles
 5.3.3.2 General description of infiltration
 5.3.3.3 Horizontal infiltration. Boltzmann transformation
 5.3.3.4 Vertical infiltration
 5.3.3.5 Green and Ampt model
 5.3.3.6 Redistribution
5.4 SUGGESTED LITERATURE
5.5 ANSWERS CHAPTER 5

6 Gas transport in soil
6.1 AMOUNT AND COMPOSITION OF SOIL AIR
6.2 EQUILIBRIUM CONDITIONS FOR SOIL AIR
6.3 BULK FLOW OF GAS
6.4 GAS DIFFUSION
6.5 CO$_2$ DIFFUSION IN SOIL PROFILES
6.6 SUGGESTED LITERATURE
6.7 ANSWERS CHAPTER 6

7 Heat transport in soil
7.1 INTRODUCTION
7.2 THERMAL SOIL PROPERTIES
 7.2.1 Volumic heat capacity
 7.2.2 Heat conductivity
7.3 HEAT CONDUCTION IN DRY SOIL
 7.3.1 Steady heat conduction