Contents

Preface

xxv

Acknowledgments

xxix

Chapter 1: Introduction

1. Wire Bonding Technologies
 1.1: Thermosonic Bonding
 1.2: Ultrasonic Wedge Bonding
 1.3: Advantages of Ball-Wedge Bonding
 1.4: Thermocompression Bonding
 1.5: Comparison of the Three Bonding Technologies
 1.6: Ultra Fine Pitch Wire Bonding

1.1.1: Disadvantages of Thermosonic Ball-Wedge Bonding
1.3.1: Disadvantages of Aluminum Wedge Bonding
1.6.1: Challenges in UFP Bonding

Chapter 2: Materials for Wirebonding

2. Bond Wire Material Requirements and Properties
 2.1: Critical Requirements of Bond Wire
 2.2: High Electrical Conductivity
 2.2.1: Electrical Resistivity of Wires
 2.3: High Current Carrying Capability
 2.3.1: Transient Current Capacities of Bonding Wire
 2.4: High Tensile Strength and Controlled Elongation
 2.5: Stress Strain Curve
 2.6: Breaking Load
 2.7: Controlled Elongation
 2.7.1: Choosing Elongation and Breaking load of 25 μ Gold Wire
 2.8: Alloying Elements and its Impact on Mechanical Properties
 2.8.1: Interstitial Dopants
 2.8.2: Substitutional Dopants
 2.8.3: Palladium Substitutional
 2.8.4: Design of Gold Wire
 2.9: Grain Sizes of Wires

1
2.1.9.1: Importance of Grain Size of the Gold Bond Wire
2.1.10: Coefficient of Thermal Expansion Compatibility
2.1.11: Productivity of Wire Bonding Process
2.1.12: Bond Wires for Hermetic Packaging
2.1.13: Corrosion Resistance
2.1.14: Device Bondpad Size

2.2: Choice of material
2.2.1: Bonding Wire Materials Choice
2.2.1.1: GOLD: A Strategic Choice!
2.2.2: Alloying of Gold to Improve Mechanical Properties
2.2.2.1: How Alloying Improves Mechanical Strength of Gold?
2.2.2.2: Alloying Elements and their Effects on Gold Wire
2.2.2.3: Atomic PPM versus Weight PPM
2.2.3: Gold Wire for Thin & Fine Pitch Applications
2.2.4: Selection of Wire for Low Loop Applications
2.2.4.1: What is HAZ?
2.2.4.2: HAZ and Dependence on Recrystallization Temperature
2.2.4.3: Some Adverse Effects of Specially Alloyed Wires
2.2.4.4: Comparison of Wire Mechanical Properties at Different Temperatures
2.2.5: Aluminum and Aluminum Alloys as Bonding Wire Material
2.2.6: Aluminum with 1% Silicon
2.2.7: Aluminum-Magnesium Wire
2.2.7.1: Comparison of Micro-structural Behaviours of Al-Si and Al-Mg Wires
2.2.8: Gold-Wire Substitutes
2.2.8.1: Silver Wire
2.2.8.2: Aluminum Wire Ball Bonding
2.2.8.3: Palladium
2.2.9: Copper

2.3: Wire Manufacturing
2.3.1: Manufacturing of Gold and Aluminum Bonding wires
2.3.2: Metal Refining
2.3.3: Melting and Casting
2.3. Wire Drawing
2.3.4.1: Dies of different diameters
2.3.4.2: Surface Cleanliness of Bond Wire
2.3.4.3: Cleaning the Drawn Wire
2.3.5: Hydrostatic Extrusion
2.3.6: Annealing
2.3.7: Winding and Spooling
2.3.7.1: Spooling for Manual Bonders Application
2.3.8: Spooling for High Speed Automated Wire Bonders
2.3.8.1: Types of Spools
2.3.9: Quality Assurance of Bond Wire
2.3.9.1: Tensile Test
2.3.9.2: Elongation Consistency
2.3.9.3: Control Charts for Elongation
2.3.9.4: Breaking Load Consistency
2.3.9.5: Composition Analysis
2.3.9.6: Bonding Test
2.3.9.7: Visual Inspection
2.3.10: Storage of Wire
2.3.11: Shelf Life
 2.3.11.1: Residual Stresses
2.4: Quality of Bondwire
 2.4.1: Surface Cleanliness and Chemical Analysis of Drawn Wire
 2.4.2: Control of Silicon Dispersion in Aluminum alloys
 2.4.2.1: Fatigue Failure of Aluminum due to Silicon Precipitate
2.5: Testing Methods and Specifications
 2.5.1: Mechanical Properties Testing
 2.5.1.1: Test Fixtures and Test Conditions for Tensile Testing
 2.5.2: SEM as a Diagnostic Tool of Fracture Mode Analysis
 2.5.2.1: Ductile Fracture of Wire
 2.5.2.2: Brittle Fracture of Al-Si Wire
 2.5.2.3: Silicon X-ray Image of Fractured Surface
2.5.3: Visual Inspection
2.5.4: Wire Diameter Measurement

Chapter 3: Bonding Equipment
3.1: Equipment Capability Requirement
 3.1.1: Bond Placement Accuracy and Repeatability
 3.1.1.1: Ball Placement on Bond Pads
 3.1.1.2: Bond Placement on Lead finger
 3.1.1.3: Pattern Recognition Systems
 3.1.1.4: Types of Pattern Recognition Systems
 3.1.1.5: Reference Systems
 3.1.1.6: Illumination
 3.1.1.7: Bond Head Technology
 3.1.2: Ball Control
 3.1.2.1: EFO Technology
 3.1.2.2: Bond Force Control
 3.1.2.3: Position and Force Measurement
 3.1.3: Looping Control
 3.1.3.1: Wire Clamp
 3.1.3.2: Open Loop
 3.1.3.3: Closed Loop
 3.1.4: Material Handling Systems
 3.1.4.1: Quick Change Material Handling Systems
Contents

4.1.9.3: Titanium Nitride 203
4.1.9.4: Titanium 203

4.1.10: Microstructure of Bondpad Metallization 203
4.1.10.1: Reflectivity 204

4.1.11: Alloying Elements and Impact on Bondability 205

4.1.12: New Al Alloys for Bondpad Metallization 206
4.1.12.1: Al-Si-Pd 206
4.1.12.2: Al-Si-Cu Alloys Doped with Hafnium and Boron 206

4.1.13: Alternate Bondpad Metallization 207
4.1.13.1: Cu-Based Metallizations 208
4.1.13.2: Gold-Based Metallizations 208
4.1.13.3: Metallization for GaAs Devices 209

4.1.14: Metallization Deposition Technology 209
4.1.14.1: Physical Vapor Deposition (PVD) Technique 209
4.1.14.2: Sputtering Technique 210
4.1.14.3: Chemical Vapor Deposition (CVD) Technique 211

4.1.15: Passivation Etching 211
4.1.15.1: Etching and its Effect on Pad Pitch 212
4.1.15.2: Passivation Residue 213

4.1.16: Bondpad Contamination 214

4.1.17: Method for Characterizing the Bondability of Chip Metallization Surfaces 214

4.1.18: Hardness Measurement of Al Bondpad 216
4.1.18.1: Hardness Measurement with Depth Sensing 217
4.1.18.2: Continuous Loading Technique 217
4.1.18.3: Theory behind Thin Film Hardness Measurement 219
4.1.18.4: Polyimide Die Coat Characterization 219

4.1.19: Leadframe and Substrate Metallization 219
4.1.19.1: Substrate Metallizations 220
4.1.19.2: Precious Metal Plating on Lead Frames 224

4.1.20: Substrate Metallization Process 225
4.1.20.1: Electroplating 226
4.1.20.2: Electroless Plating 226
4.1.20.3: Sputtering 227
4.1.20.4: Cladding 227
4.1.20.5: Immersion Plating 228
4.1.20.6: Underplating 229

4.1.21: Morphology of Plated Film 231
4.1.21.1: Surface Finish of Leadframe and its Effect on Bondability 232

4.1.22: Alternate Substrate Metallization 232
4.1.22.1: Palladium Plated Lead Frames 233
4.1.22.1: Bonding to Pd-Ag and Pd-Au Metallization 234
4.1.22.3: Nickel Plating 234

4.1.23: Characterisation of Substrate Metallization Quality 236
4.1.24: Impact of Film Properties on Bonding 237
4.1.24.1: Plating Thickness
4.1.24.2: Effect of Plating Thicknesses on the Strength and Reliability of Substrate Metallization
4.1.24.3: Plating Thickness Measurement Test Methods
4.1.24.4: X-ray Fluorescence Technique
4.1.24.5: Thickness Measurement Error Analysis
4.1.24.6: Measurement Procedure
4.1.24.7: Silver Plating Brightness
4.1.24.8: Silver Plating Brightness Measurement Methodology
4.1.24.9: Interferences
4.1.24.10: Measurement of Breakdown Voltage of Silver Plating
4.1.24.11: Bondability vs. Breakdown Voltage
4.1.24.12: Effect of Plating Cleanliness during Substrate Metallization
4.1.24.13: Impact of Plating Impurities on Bonding and Bond Reliability
4.1.25: Visual defects of films
4.1.25.1: Baking Test
4.1.25.2: Adhesion Test
4.1.26: Bonding Wire as Process Variable
4.1.26.1: Wire Selection
4.1.26.2: Wire Parameters that Affect Bonding
4.1.27: Wire Type
4.1.28: Wire Size
4.1.29: Effect of Wire Diameter on Free Air Ball
4.1.30: Effect of Wire Diameter on Shear Force
4.1.31: Effect of Wire Diameter on Breaking Loads
4.1.32: Wire Diameter: Effect on Neck Strength
4.1.33: Wire Uniformity
4.1.34: Effect of Wire Spooling
4.1.35: Wire Surface Conditions
4.1.36: Second Source and Its Impact
4.1.37: Ball Contact Diameter
4.1.38: Bonding Tool
4.1.39: Bonding Tool Selection
4.1.40: Capillary Dimensions
4.1.41: Capillary Tip Diameter
4.1.41.1: Tip Diameter Tolerance
4.1.42: Capillary Hole and its Effect
4.1.42.1: Tip-Bore Concentricity Tolerance
4.1.43: Chamfer Diameter and Chamfer Angle
4.1.43.1: Chamfer Angle and its Effects
4.1.44: Face Angle
4.1.44.1: Impact of Tip Diameter on Face Angle
4.1.44.2: Impact of Plating Thickness on Face Angle Selection
4.1.44:3: Face Length 275
4.1.45: Outer Radius of the Capillary 276
4.1.46: Capillary Shapes 276
 4.1.46.1: Inconsistency of Ultrasonic Coupling 277
 4.1.46.2: Breaking of the Tip 278
4.1.47: Slim Capillaries 279
4.1.48: Capillary Materials 280
4.1.49: Capillary Manufacturing with CNC Machining 283
4.1.50: Ceramic Injection Molding (CIM) Process 284
4.1.51: Advantages of Ceramic Injection Molding 285
4.1.52: Capillary Material Selection Criteria 285
 4.1.52.1: Small Grain Size 285
 4.1.52.2: Higher Density 286
 4.1.52.3: Higher Bending Strength 286
 4.1.52.4: Resistant to Tip Breakage 286
 4.1.52.5: Sleek Material Finish 287
4.1.53: Capillary Surface Finish 287
 4.1.53.1: Polished Finish Capillary 287
 4.1.53.2: Matte Finish 287
4.1.54: Capillary Damage 288
4.1.55: Wedge Tool for Ultrasonic Bonding 289
4.1.56: Back Radius 291
 4.1.56.1: Elliptical Back Radius vs. Chamfer Back Radius 292
4.1.57: Face of Wedge 293
 4.1.57.1: Concave Tool 293
4.1.58: Deep Access Bonding 294
4.1.59: What is Reverse Bonding? 295
 4.1.59.1: Advanced Deep Access Bonding 296
4.1.60: Wire Feed and Impact on Bond Position 297
4.1.61: Materials for Wedge Tool 298
4.1.62: Surface Finish 298
 4.1.62.1: Cross Groove Tool 299
 4.1.62.2: Wedge Tool of Heavy Wire 301
4.1.63: Other Wedge Tools 302
 4.1.63.1: Ribbon Bonding Tool 302
 4.1.63.2: Special Bonding Tool 302
4.1.64: Other Variables that Impact Bonding 303
4.1.65: Wirebond Equipment and Work Holder 303
4.1.66: Pattern Recognition System 303
4.1.67: EFO Consistency 305
 4.1.67.1: Positive vs. Negative EFO 305
 4.1.67.2: Impact of EFO on Looping 306
4.1.68: Wire Feed Consistency 307
4.1.69: Accurate Touchdown Detection and Impact Control 308
4.1.70: Synchronization 308
4.1.71: Stability of Settings 309
4.1.72: Software Related Bugs 309
4.1.73: Missing Bond Detector 310
4.1.74: Heater Block 310
 4.1.74.1: Non Uniform Heating 311
4.1.75: The Lead Frame Clamp 311
 4.1.75.1: Package Vacuum Clamp 312
4.1.76: Tool Resonance 313
 4.1.76.1: Effect of Tool Slimness 313
 4.1.76.2: Capillary Length Effect on Tool Resonance 314
4.1.77: Special Bond Tool Features 315
4.1.78: Thermocompression Bonding 316
4.1.79: Process Variables affecting COB Packages 317
 4.1.79.1: PCB Mechanical Properties and Effect on Ultrasonic Coupling 319
4.1.80: Operator Skills 320
4.2: Process Optimization 321
 4.2.1: Purpose of Process Optimization 322
 4.2.1.1: Process Optimization Sequence for Thermosonic Bonding 323
 4.2.2: Au Ball Bond Optimization 324
 4.2.3: Optimization of Free Air Ball 326
 4.2.4: Design of Experiment 327
 4.2.4.1: Example of Au Wire Bond Optimization Using Taguchi Method 328
 4.2.4.2: Ball Bonding Parameters Optimization 328
 4.2.4.3: Optimization of Wedge Bond 331
 4.2.4.4: Response Surface Model 333
 4.2.4.5: Confirmation of DOE 334
 4.2.4.6: DOE Software 334
 4.2.5: Aluminum Wedge Bond Optimization 335
 4.2.6: Second Bond Optimization 335
 4.2.6.1: How to Optimize Bond Width 336
 4.2.6.2: Optimization of Second Bond with Pull Test 337
 4.2.6.3: Looping Optimization 339
 4.2.6.4: Capillary Design Optimization Considerations 340
 4.2.6.5: Tip Diameter Optimization 342
 4.2.6.6: Capillary Tolerance 342
4.3: Process Control 346
 4.3.1: Bond Pull 347
 4.3.2: Use of Control Charts 348
 4.3.2.1: Control limits should not be confused with Specification Limits 349
 4.3.3: Bond Pull Force as the Measurable Characteristic 349
 4.3.3.1: Selection of Wires for Bond Pull Test 350
xvi Contents

4.3.4: Creating a Control Chart 351
4.3.5: Procedure for Calculating Parameters for an X-Bar and R-Chart 354
4.3.6: Interpretation of Control Charts 355
4.3.7: Process Control using Bond Shear Strength 355
4.3.8: Visual Inspection 356
4.3.8.1: p CHARTS 356
4.3.9: Intermetallic Area Measurement 357
4.3.10: Bond Etching 358
4.3.12: Process Capability, Cpk Analysis 358

4.4: Process Monitoring 359
4.4.1: Monitoring the Bonding Responses 360
4.4.2: Ultrasonic Frequency Control and Monitoring 362
4.4.3: Bonding Tool Amplitude Measurement 362
4.4.4: Capacitive Microphone Technique 363
4.4.5: Impedance Measurement System 364
4.4.6: Ultrasonic Measurement using Laser Interferometry 365
4.4.6.1: Measurement Procedure 366
4.4.7: Wedge Tool Vibration Measurement using Optical Sensor 366
4.4.8: Effect of Loading on Tool Vibration Mode 368
4.4.8.1: Impact of Extension of the Tool on Resonance 369
4.4.9: Bond Force Measurement 370
4.4.10: Bonding Time Monitoring 371
4.4.11: Other Bond Monitoring Techniques 371
4.4.12: Siemens' Process Monitoring Methodology 372
4.4.12.1: Quality of Bond 373
4.4.13: Temperature Monitoring 375
4.4.13.1: In-situ Measurement of Stress and Temperature 375
4.4.13.2: Microsensors for Stress Measurement 376
4.4.13.3: Microsensors for Temperature Measurement 377

4.5: Process Mechanism 380
4.5.1: Ultrasonic Bonding 380
4.5.1.1: Ultrasonic Bondability of Metals 382
4.5.1.2: Growth of Bonded Interface 383
4.5.2: Impact of Tool on Weld Strength 384
4.5.2.1: Why do the Metals "Soften" when Ultrasonic Energy is Applied? 384
4.5.2.2: Is there heat generation during Ultrasonic bond formation? 386
4.5.2.3: Mechanism of Ultrasonic Wedge Bonding of Au 386
4.5.2.4: Impact of Ultrasonic Bonding on Reliability 387
4.5.3: Thermocompression Mechanism 388
4.5.3.1: Thermocompression Bonding Mechanism 388
4.5.3.2: Effect of Time 389
4.5.3.3: High Frequency Bonding Mechanism 391
4.5.3.4: Stages of High Frequency Bonding 392
4.5.3.5: Intermetallic Formation at Different Frequencies 394
4.5.3.6: Shear Strengths as a Function of Amplitude 394
4.5.3.7: Shear Strength as a Function of Time 395
4.5.3.8: Impact of Alloying on Intermetallic Phase Formation 395
4.5.3.9: Mechanism of Formation of Second Bond on Lead Frame 396

4.6: Design for Bondability 397
4.6.1: Die Design Rules 398
4.6.2: Bond pad Rules 399
 4.6.2.1: Bond Pad Placement on Die 399
 4.6.2.2: Bonding Pad Placement Relative to Pins 402
 4.6.2.3: Bonding Path Inclination or Wire Approach Angle 402
 4.6.2.4: Maximum Length of Wire over the Die 403
 4.6.2.5: Bondpad Size Requirements 403
 4.6.2.6: Calculation of Bond Pitch as a Function of Chip I/O 404
 4.6.2.7: Pad Pitch Determination for Ultra Fine Pitch Bonding 407
 4.6.2.8: Effect of Wire Diameter on Bond Pad Pitch 408
4.6.3: Maximum Admissible Current through the Wire 409
 4.6.3.1: Bondpad Design for High Current Application 411
 4.6.3.2: Bond Pad Design to Improve Wire Bond Reliability 412
 4.6.3.3: Non-conformance to Die Design Report 415
4.6.4: Assembly and Package Design Guidelines 416
 4.6.4.1: Pad Design Rules on CSP and BGA Substrates 416
 4.6.4.2: The Cost Impact of Line Spacing and Line Width 419
 4.6.4.3: Package Design Consideration 419
4.6.5: Design of Loop Height 420
 4.6.5.1: Wire Gap Requirement in Design 421
 4.6.5.2: Die Size Rules in Packages 422
 4.6.5.3: Minimum/Maximum Die Sizes Allowed in a Package 424
 4.6.5.4: Die to Cavity Fit 424
4.6.6: Staggered Pad Pitch Capability 425
 4.6.6.1: Wire Rules 426
 4.6.6.2: Maximum Number of Wires on a Pad 426
 4.6.6.3: Wire Clearance Rules 426
 4.6.6.4: Bond Angle Range 427
4.6.7: Crossing Wires 427
4.6.8: Crossing Wires due to Die Shift 428
 4.6.8.1: Minimum Distance between Wires and Adjacent Bond 431
4.6.9: Wire Length Rules 431
 4.6.9.1: Loop Control 434
4.6.10: Bond Design and Package Compatibility 434
4.6.11: Bond Diameter Percent Off-Pad 435
4.6.12: Lead Frame Design Considerations for Bonding 435
 4.6.12.1: Cantilever Lead Frame Design 437
4.6.13: Package Design Software include Bonding Capability 439

4.7: Process Problems and Solutions 440
4.7.1: Non-stick of Ball on Bondpad
 4.7.1.1: Corrective Actions for Bond offs
4.7.2: Non Stick of Weld on Leadfinger
 4.7.2.1: Rebonding a Wedge Bond
 4.7.2.2: Ball Bond Removal Tool
4.7.3: Positioning of the Ball on Pad
4.7.4: Positioning of Wedge on Leadfinger
4.7.5: Wire Sagging
4.7.6: Wire Tailing
4.7.7: Wire Breakage during Bonding
4.7.8: Taut Loops
4.7.9: Deformed Balls
4.7.10: Off Centered Ball (Golf Club Balls)
4.7.11: Cratering
4.7.12: Metal Squeeze Out
4.7.13: Wire Swaying
4.7.14: Wire Clamp Problems
4.7.15: Low Frequency Motion and Bond Formation
4.7.16: Capillary Clogging
 4.7.16.1: Cleaning a Capillary or Wedge Tool
4.7.17: Capillary Unplugging
 4.7.17.1: Other Unplugging Methods
 4.7.17.2: Rotating Wire Method
4.7.18: Chemical Methods of Bond Tool Cleaning
 4.7.18.1: Cleaning with Aquaregia
 4.7.18.2: Cleaning the Wedge Tool
 4.7.18.3: Important Tips during Capillary Cleaning
4.7.19: Bond Pad and Leadframe Contamination
4.7.20: Organic Contamination
 4.7.20.1: Contamination Removal
4.7.21: Plasma Cleaning
 4.7.21.1: What is Plasma?
 4.7.21.2: Generating a Plasma
4.7.22: Mechanism of Plasma
 4.7.22.1: Chemical Processes in Plasma Cleaning
 4.7.22.2: Physical Process of Plasma Cleaning
4.7.23: Plasma Equipment
 4.7.23.1: The Plasma Chamber
 4.7.23.2: The Plasma Power Supply
 4.7.23.3: Plasma Cleaning in Magazines
4.7.24: Plasma Process Parameters
 4.7.24.1: Pressure/Flow Rate
 4.7.24.2: Power
4.7.25: DC Hydrogen Plasma
 4.7.25.1: Equipment Set-up
4.7.25.2: Mechanism of DC Hydrogen Plasma 467
4.7.26: Comparative Analysis of Chemical and Physical Cleaning 467
4.7.26.1: Impact of Plasma Cleaning on Bond Pull Strength 468
4.7.26.2: Impact of Plasma Cleaning on Bond Shear Test 469
4.7.26.3: Impact of Plasma Cleaning on Wettability 470
4.7.27: Applications of Plasma Cleaning 472
4.7.27.1: Hybrids 472
4.7.27.2: Low Temperature Bonding 473
4.7.28: Negative Effects of Plasma Cleaning 473
4.7.28.1: Argon vs. Oxygen Cleaning 474
4.7.29: UV/Ozone Cleaning 474
4.7.29.1: What is UV/Ozone Cleaning? 474
4.7.29.2: Advantages of UV/Ozone Cleaning 475
4.7.30: Mechanism of UV/Ozone 475
4.7.31: UV/Ozone Equipment 477
4.7.31.1: Safety Considerations 477
4.7.32: UV/Ozone Process Parameters 478
4.7.33: Effect of UV/Ozone 478
4.7.33.1: Effect of UV/Ozone on Wettability 478
4.7.33.2: Applications of UV/Ozone cleaning 478
4.7.34: Negative Effects of UV Ozone 479
4.7.34.1: Disadvantages of UV/Ozone Cleaning 480
4.7.34.2: Corona Discharge Cleaning 480

Chapter 5: Quality 481
5.1: Bond Pull Technology 482
5.1.1: The Bond Pull Test 482
5.1.1.1: Different Modes of Pull Test Failures and their Interpretation 483
5.1.1.2: Ball Lift Failure 483
5.1.1.3: Actual Force on the Ball during Bond Pull Test 485
5.1.1.4: Ball Neck Failure 485
5.1.1.5: Wire Break at Mid Span 486
5.1.1.6: Heel Break 486
5.1.1.7: Weld Lift 487
5.1.1.8: Bond Pull Data Specimen 488
5.1.1.9: Pareto Analysis of Bond Failures 489
5.1.1.10: Selection of Optimum Sample Size for Destructive Bond Pull Test 490
5.1.2: Effect of Hook Position on Failure Mode 491
5.1.2.1: Force Distribution during Bond Pull Test 492
5.1.2.2: Pulling Speed during Pull Test 494
5.1.3: Effect of Hook Diameter 494
5.1.4: The Effect of Wire Elongation on Bond Pull Strength 497
5.1.4.1: Effect on Elongation during Packaging 498
xx Contents

5.1.5: Effect of Wire Length on Bond Pull Strength 498
5.1.6: Effect of Loop Height on Bond Pull Strength 500
5.1.7: Effect of Loop Parameters 500
5.1.8: Analysis of Force Distribution during Bond Pull 501
 5.1.8.1: Simulation of Bond Pull Forces 502
5.1.9: Angle of Pull and Failure Modes 503
5.1.10: Suggested Pull Test Method 505
 5.1.10.1: Advantages of New Pull Technique 506
5.1.11: Non-Destructive Pull Test 508
 5.1.11.1: Precautions to be taken during NDPT 509
 5.1.11.2: Determining the NDPT Force 509
 5.1.11.3: Is NDPT a Reliable Test? 509
5.1.12: Testing Weld Strength using Bond Pull 510
5.1.13: Bond Pull Equipment 510
 5.1.13.1: Hook Holders 511
5.1.14: Auto Bond Pull Test 512
 5.1.14.1: 100 Percent wirebond Autotest 513
 5.1.14.2: Pattern Recognition in Auto Testers 513
 5.1.14.3: Multihead Operations 514
5.1.15: Bond Pull Test Specification 515
 5.1.15.1: Recommended Sampling 515
 5.1.15.2: Bond Pull Tester Calibration & Standardization 515
 5.1.15.3: Bond Pull Test Procedure 515
5.1.16: Limitations of Wire Bond Pull Test 516
 5.1.16.1: Wedge Bond Pull Test 517
 5.1.16.2: The Wedge Peel Off 518
 5.1.16.3: The Heel Break 518
5.2: Ball-Bond Shear Test 518
 5.2.1: Description of the Test 519
 5.2.1.1: Ball Lift / Partial Metallization Lift Off 520
 5.2.1.2: Ball Shear (Weld Interface Separation) 521
 5.2.1.3: Bond Pad Lift (Substrate Metallization Removal) 521
 5.2.1.4: Cratering 522
 5.2.2: Ball Shear Equipment 522
 5.2.2.1: Shear Ram Size and Selection 523
 5.2.2.2: Size of the Shear Ram 524
 5.2.2.3: Cleanliness and Wear of Shear Ram 525
 5.2.3: Ball Shear Test Process 525
 5.2.4: Shear Test Variables 527
 5.2.4.1: Operator Technique 527
 5.2.4.2: Shear Tool Geometry 528
 5.2.4.3: Bonding Temperature 529
 5.2.5: Shear Test Interferences and Measurements Errors 530
 5.2.5.1: Wire Shear 530
 5.2.5.2: Shear Ram Drag 531
5.2.6: Shear Strength on Different Metallization 531
5.2.7: Shear Test of Bonds on Uncontaminated Pads 533
 5.2.7.1: Shear Ram Speed 534
5.2.8: Shear Test on Thick Films 535
5.2.9: Shear Force and Shear Strength 535
 5.2.9.1: Calculation of Lower Spec. Limit (LSL) 537
5.2.10: Shear Test Specification 538
5.2.11: Non Destructive Shear Test 543
5.3: Visual Inspection of Bond Quality 543
 5.3.1: Pre Bonding Inspection 544
 5.3.2: Post Bonding Inspection 545
 5.3.3: Visual Inspection Criteria 545
 5.3.4: Automated Visual Inspection 547
 5.3.4.1: Automated Visual Inspection Requirements 548
 5.3.4.2: Inspection System 548
 5.3.4.3: Before Inspection 549
 5.3.4.4: System Performance 549
 5.3.5: Visual Inspection Equipment Capabilities 550
 5.3.6: Loop Height Measurement 551
 5.3.6.1: Depth-of-Field 552
 5.3.6.2: Single-Wave Length Light Source 552
 5.3.6.3: Split-Prism Focusing Aid 552
 5.3.6.4: Micrometer Encoder Pitch 552
 5.3.7: Scanning Electron Microscopy for Wire Defect Analysis 553
 5.3.8: Third Optical Inspection Specification 553
5.4: Special Tests for Quality 555
 5.4.1: Bond Etching 555
 5.4.2: Electrical Testing 556
 5.4.3: Bake Test 556
 5.4.4: Surface Analysis 556
 5.4.5: Acoustic Emission 556

Chapter 6: Reliability 559
 6.1: Purple Plague 559
 6.1.1: Purple Plague or Intermetallic Compounds 559
 6.1.2: Formation of Intermetallics 560
 6.1.2.1: How do Intermetallics Affect Reliability? 561
 6.1.3: Kirkendall Voids Causing High Resistance or Open Circuit 562
 6.1.4: Intermetallic Compounds Causing Brittle Fracture 563
 6.1.4.1: Growth of Intermetallic 564
 6.1.4.2: Kirkendall Void Formation in Aluminum Bond on Gold Film 566
 6.1.5: The Arrhenius Equation 567
 6.1.5.1: Impurity Accelerated Gold-Aluminum Bond Failures 568
 6.1.5.2: Effect of Bromine on the Gold-Aluminum Bond System 568
xxii Contents

6.1.5.3: Effect of Temperature on Molding Compound 571

6.1.6: Methods of Analysis of Intermetallic Formation 571
 6.1.6.1: Metallurgical Cross Section and Inspection 571
 6.1.6.2: Infra Red Microscope Analysis 572

6.1.7: Electrical Resistivity Measurements 572
 6.1.7.1: Four Point Method 573
 6.1.7.2: Effect of Annealing Temperature on Resistivity 575
 6.1.7.3: Resistivity Change Due to Molding Compound 575
 6.1.7.4: Controlling Purple Plague in Thick Films 576

6.2: Spiking 576
 6.2.1: Aluminum-Silicon Alloy 576

6.3: Cratering 577
 6.3.1: Bond pad Cratering 577
 6.3.1.1: Causes of Cratering 579
 6.3.2: Effect of Bonding Force 579
 6.3.3: Effect of Ultrasonic Energy 580
 6.3.3.1: Probable Mechanism of Cratering with Ultrasonic Energy 581
 6.3.4: Silicon Nodule-Induced Cratering 582
 6.3.5: Effect of Wire Hardness 583
 6.3.6: Effect of Metallization Thickness 585
 6.3.7: Moisture Absorption in Plastic Package 585
 6.3.8: Effect of Intermetallic Compound 586
 6.3.8.1: How to Minimize Bond Crater Problem 587
 6.3.8.2: Diagnosis of a Crater 587

6.4: Wire Sweep 588
 6.4.1: Different Causes of Wire Sweep 590
 6.4.2: Effect of Bonding Wire 590
 6.4.2.1: Effect of Wire Length 590
 6.4.2.2: Effect of Bond Height 591
 6.4.2.3: Effect of Bond-Wire Diameter 591
 6.4.2.4: Effect of Loop Trajectory and Package Type 592
 6.4.2.5: Effect of Young’s Modulus 593
 6.4.3: IC package design 594
 6.4.3.1: Effect of Mold Design 594
 6.4.3.2: Effect of Mold Process 594
 6.4.3.3: Effect of Mold Temperature 595
 6.4.4: Effect of Molding Compound 596
 6.4.5: Effect of Wire Orientation with Respect to Mold Front 599
 6.4.6: FEM of Wire Sweep 600
 6.4.6.1: Prediction of Flow Induced Forces 601

6.5: Corrosion 602
 6.5.1: Corrosion of Al-Cu Bondpad Metallization 603
6.5.1.1: Mechanism of Pitting Corrosion 603
6.5.2: Chlorine Induced Corrosion 604
 6.5.2.1: Reliability Effects of Fluorine Contamination 606
6.6: Heel Crack 606
 6.6.1: Thermal and Power Cycling Induced Heel Failures 606
 6.6.2: Power Cycling and Its Impact 608
 6.6.2.1: Use of Al Wire vs Au Wire 608
 6.6.2.2: Effect of Power Dissipated on ΔH_L 609
 6.6.2.3: Temperature Cycling and its Impact on Bond Reliability 610
 6.6.3: Causes of Heel Cracks 610
 6.6.3.1: Excessive Bond Force 611
 6.6.3.2: Contaminated and Worn Out Bonding Tool 611
 6.6.3.3: Hardness of the Wire 611
 6.6.3.4: Silicon Precipitates at the Heel 612
 6.6.3.5: Loop Height and Angle of Approach of the Wire 612
 6.6.3.6: Bond Tool Design 612
 6.6.3.7: Trim and Form Operation 612
 6.6.4: Characterization of the Fatigue Properties of Bonding Wires 613
 6.6.5: Can We Screen Heel Cracks by Visual Inspection? 614
6.7: Other Reliability problems 615
 6.7.1: Die Attach Pad Shift Failures 618
 6.7.2: Over Current Failures 619
 6.7.3: Grain Growth Failures 620
 6.7.4: Al bond Failures on Silver plated leadframes 621
 6.7.5: Aluminum Silver Corrosion 623
 6.7.5.1: Corrosion of Al-Wire Bonds on Ag Plated Surfaces 623
 6.7.6: Bond Failures due to Centrifuge Test 624
 6.7.6.1: Failures due to TCE Mismatch 624
6.8: Electrical Performance Degradation due to Wire Sweep 625
 6.8.1: Effect of Wire Span on Inductance Values 627

Chapter 7: New Technologies and New Applications for Wire Bonding 629
7.1: Wire Bonding in Opto-Electronics 629
 7.1.1: Design Challenges 630
 7.1.2: Material Challenges 631
 7.1.3: Process Issues 631
 7.1.4: Process Problems in Opto Wire Bonding 633
 7.1.5: Bonding Tools for Opto Wire Bonding 633
 7.1.6: Equipment Requirements 634
7.2: Wire Bonding in Stacked Die Packages 635
 7.2.1: Zero Loop Wedge Bonding 639
 7.2.2: Low Loop Height 639
7.3: Low Temperature Bonding with New Ultrasonic Transducer 640
7.4: Copper Bonding Technology 643
 7.4.1: Copper Bonding Wire Materials Technology 644
Contents

7.4.2: Equipment Issues and Challenges 645
 7.4.2.1: Inert Gas Requirement for Copper Bonding 646
 7.4.2.2: Closed Loop Force Control 646
 7.4.2.3: Second Bond Considerations in Copper Bonding 647
7.4.3: Capillary Selection 648
 7.4.3.1: Ultrasonic Wedge Bonding of Copper Wire 648
 7.4.3.2: Reliability of Copper Bonding 649
7.5: MicroBGA Lead Bonding Process 650
 7.5.1: Differences between Lead and Wire Bonding 651
 7.5.2: Lead Bonding Process Overview 651

Appendices

References 655

Appendix A Self Test [VIEW-IN-CDROM]
Appendix B Trouble Shooting Guide [VIEW-IN-CDROM]

Index 661

About the author 669