Introduction to Conservation Genetics

Richard Frankham,
Macquarie University, Sydney

Jonathan D. Ballou
Smithsonian Institution, Washington, DC

and David A. Briscoe
Macquarie University, Sydney

Line drawings by
Karina H. McInness
Inkbyte, Melbourne
Chapter 1 | Introduction

'The sixth extinction'
Why conserve biodiversity?
Endangered and extinct species
What is an endangered species?
What causes extinctions?
Recognition of genetic factors in conservation biology
What is conservation genetics?
How is genetics used to minimize extinctions?
Genetic versus demographic and environmental factors in conservation biology
What do we need to know to genetically manage threatened species?
Methodology in conservation genetics
Island theme
Sources of information
Summary
General bibliography
Problems
Practical exercises: Categorizing endangerment of species

Chapter 2 | Genetics and extinction

Genetics and the fate of endangered species
Relationship between inbreeding and extinction
Inbreeding and extinction in the wild
Relationship between loss of genetic diversity and extinction
Summary
Further reading
Problems
Practical exercises: Computer projections

SECTION I | EVOLUTIONARY GENETICS OF NATURAL POPULATIONS

Chapter 3 | Genetic diversity

Importance of genetic diversity
What is genetic diversity?
Measuring genetic diversity
Extent of genetic diversity
CONTENTS

Low genetic diversity in endangered species 66
What genetic diversity determines evolutionary potential? 67
Variation over space and time 67
What explains differences in levels of genetic diversity? 68
Genetic differences among species 68
Summary 68
Further reading 69
Problems 70
Practical exercise: Measuring genetic diversity using microsatellites 70

Chapter 4 Characterizing genetic diversity: single loci 72
Describing genetic diversity 73
Frequencies of alleles and genotypes 73
Hardy–Weinberg equilibrium 75
Expected heterozygosity 78
Deviations from Hardy–Weinberg equilibrium 84
Extensions of the Hardy–Weinberg equilibrium 86
More than one locus–linkage disequilibrium 90
Summary 93
Further reading 94
Problems 94

Chapter 5 Characterizing genetic diversity: quantitative variation 96
Importance of quantitative characters 97
Properties of quantitative characters 98
Basis of quantitative genetic variation 100
Methods for detecting quantitative genetic variation 103
Partitioning genetic and environmental variation 105
Genotype × environment interaction 106
The need for contemporary comparisons and control populations 108
Partitioning of quantitative genetic variation 108
Evolutionary potential and heritability 111
Susceptibility to inbreeding depression 120
Correlations between molecular and quantitative genetic variation 122
Organization of quantitative genetic variation 122
Summary 123
Further reading 123
Problems 124

Chapter 6 Evolution in large populations. I. Natural selection and adaptation 126
The need to evolve 127
Factors controlling the evolution of populations 131
Contents

Selection 133
Selection on quantitative characters 145
Directional selection 146
Stabilizing selection 149
Disruptive selection 149
Summary 150
Further reading 150
Problems 151
Practical exercises: Computer simulations 152

Chapter 7 | Evolution in large populations. II. Mutation, migration and their interactions with selection 154
Factors controlling the evolution of populations 155
Importance of mutation, migration and their interactions with selection in conservation 155
Origin and regeneration of genetic diversity 155
Mutation 156
Selective value of mutations 160
Mutation–selection balance and the mutation load 162
Migration 167
Migration–selection equilibria and clines 169
Summary 173
Further reading 173
Problems 173

Chapter 8 | Evolution in small populations 175
Importance of small populations in conservation biology 176
Impact of small population size: chance effects 178
Inbreeding 187
Measuring population size 187
Selection in small populations 190
Mutation in small populations 191
Mutation–selection equilibrium in small populations 192
Computer simulation 193
Summary 194
Further reading 194
Problems 195
Practical exercises: Computer simulations 195

Chapter 9 | Maintenance of genetic diversity 197
Conservation of genetic diversity 198
Fate of different classes of mutations 198
Maintenance of genetic diversity in large populations 199
Neutral mutations under random genetic drift 200
Selection intensities vary among characters 203
Balancing selection 204
Maintenance of genetic diversity in small populations 214
How do species arise? 372
Use of genetic markers in delineation of sympatric species 375
Use of genetic markers in delineation of allopatric species 376
Measuring differences between populations: genetic distance 379
Constructing phylogenetic trees 382
Outbreeding depression 385
Defining management units within species 388
Summary 392
Further reading 392
Problems 393
Practical exercise: Building a phylogenetic tree 394

Chapter 16 Genetics and the management of wild populations 395

Genetic issues in wild populations 396
Resolving taxonomy and management units 399
Increasing population size 399
Diagnosing genetic problems 401
Recovering small inbred populations with low genetic diversity 401
Genetic management of fragmented populations 404
Genetic issues in reserve design 410
Introgression and hybridization 411
Impacts of harvesting 412
Genetic management of species that are not outbreeding diploids 414
Summary 416
Further reading 417
Problems 417

Chapter 17 Genetic management of captive populations 419

Why captive breed? 420
Stages in captive breeding and reintroduction 422
Founding captive populations 423
Growth of captive populations 426
Genetic management of captive populations 427
Current genetic management of captive populations 429
Captive management of groups 439
Ex situ conservation of plants 441
Reproductive technology and genome resource banks 441
Managing inherited diseases in endangered species 443
Summary 445
Further reading 446
Problems 446

Chapter 18 Genetic management for reintroduction 448

Reintroductions 449
Genetic changes in captivity that affect reintroduction success 452