DAMS AND APPURTEINANT HYDRAULIC STRUCTURES

LJUBOMIR TANČEV
Professor, Faculty of Civil Engineering,
Sts Cyril and Methodius University,
Skopje, Republic of Macedonia
Contents

Preface xiii

PART ONE: DAMS AND APPURtenANT HYDRAULIC STRUCTURES – GENERAL 1

1 UTILIZATION OF WATER RESOURCES BY MEANS OF HYDRAULIC STRUCTURES 3
 1.1 Introduction 3
 1.2 Hydraulic structures (definition, classification) 6
 1.3 General features of hydraulic structures 7
 1.4 Intent of dams. Elements of a dam and a reservoir 16
 1.5 Short review of the historical development of hydraulic structures 17

2 FOUNDATIONS OF DAMS 19
 2.1 Foundations for hydraulic structures in general 19
 2.2 Requirements for the foundation 22
 2.3 Investigation works regarding dam foundations 30
 2.4 Improvement of foundations 32

3 SEEPAGE THROUGH DAMS 43
 3.1 Action of seepage flow 43
 3.2 Mechanical action of seepage flow on the earth’s skeleton 44
 3.3 Seepage resistance of earth foundations and structures 47
 3.4 Theoretical aspects of seepage 48
 3.5 Practical solution of the problem of seepage 53
 3.6 Seepage in anisotropic soil conditions 57
 3.7 Seepage in non-homogeneous soil conditions 60
 3.8 Seepage of water through rock foundations 61
 3.9 Lateral seepage 64
 3.10 Seepage through the body of concrete dams 65

4 FORCES AND LOADINGS ON DAMS 67
 4.1 Forces and loadings on dams in general 67
 4.2 Forces from hydrostatic and hydrodynamic pressure 69
 4.3 Influence of cavitation and aeration on hydraulic structures 71
 4.4 Influence from waves 72
 4.5 Influence of ice and water sediment 79
 4.6 Seismic forces 81
 4.7 Temperature effects 84
 4.7.1 Temperature effects on embankment dams 85
 4.7.2 Temperature effects on concrete structures 86
9.2.1 Strength, attenuation, and amplification of earthquakes 199
9.2.2 Design earthquake 203
9.3 Liquefaction 205
9.4 Analysis of stability and deformations in embankment dams induced by earthquakes
 9.4.1 Pseudo-static method 208
 9.4.2 Pseudo-static methods with a non-uniform coefficient of acceleration 209
 9.4.3 Equivalent linear method 215
 9.4.4 Pure nonlinear method 215

10 EARTHFILL DAMS 221
 10.1 Classification and construction of earthfill dams 221
 10.2 Structural details for earthfill dams 222
 10.2.1 Slope protection 222
 10.2.2 Water-impermeable elements 228
 10.2.3 Drainages 235
 10.3 Preparation of the foundation and the joint between earthfill dams and the foundation
 10.3.1 Preparation of the general foundation 244
 10.3.2 Preparation of the foundation when using a dam cutoff trench 244
 10.3.3 Joint of the earthfill dam and the foundation 244

11 EARTH–ROCK DAMS 249
 11.1 Construction of earth–rock dams 249
 11.2 Earth–rock dams with vertical core 252
 11.3 Earth–rock dams with a sloping core 255
 11.4 Earth–rock dams of ‘soft’ rocks 260
 11.5 Fissures in the core of earth–rock dams
 11.5.1 Kinds of fissures and causes for their occurrence 263
 11.5.2 Measures for preventing the occurrence of fissures 266
 11.6 Designing earth–rock dams in seismically active areas 272

12 ROCKFILL DAMS WITH REINFORCED CONCRETE FACING 275
 12.1 Definition, field of application and construction 275
 12.2 Modern dams with reinforced concrete facing 281
 12.3 Joints for reinforced concrete facings 289
 12.4 Construction of reinforced concrete facings 294
 12.5 Examples of modern dams with reinforced concrete facing 296

13 ROCKFILL DAMS WITH ASPHALTIC CONCRETE AND OTHER TYPES OF FACINGS 303
 13.1 Rockfill dams with asphaltic concrete facing
 13.1.1 General characteristics 303
 13.1.2 Composition and characteristics of hydraulic asphaltic concrete 304
 13.1.3 Construction of the asphaltic concrete facings 306
 13.1.4 Joint of the lining with a gallery or concrete cutoff in dam’s toe 312
 13.1.5 Joint of the facing with dam’s crest 317
CONTENTS

13.2 Rockfill dams with steel facing 318
13.3 Rockfill dams with facing of geomembrane 320

14 ROCKFILL DAMS WITH DIAPHRAGM WALL
14.1 Rockfill dams with asphaltic concrete diaphragm wall 327
 14.1.1 Function, conditions of work and materials 327
 14.1.2 Structure of the asphaltic concrete diaphragm walls 329
 14.1.3 Joint of diaphragm wall with the foundation and lateral concrete structures 335
14.2 Other types of diaphragm walls 339
 14.2.1 Concrete diaphragm walls 339
 14.2.2 Grout and plastic diaphragm walls 345
14.3 Stability of earth-rock dams with diaphragm wall 346

15 MONITORING AND SURVEILLANCE OF EMBANKMENT DAMS 351
15.1 Task and purpose of monitoring 351
15.2 Monitoring of pore pressure and seepage 352
 15.2.1 Hydraulic piezometers 352
 15.2.2 Electric piezometers 355
 15.2.3 Monitoring of seepage 356
15.3 Monitoring of displacements 358
 15.3.1 Measurement of displacements at the surface of the dam 358
 15.3.2 Measuring displacements in the interior of the dam 359
15.4 Measurements of stresses 367
15.5 Seismic measurements 367
15.6 General principles on the selection and positioning layout of measuring instruments 368

PART THREE: CONCRETE DAMS 373

16 GRAVITY DAMS ON ROCK FOUNDATIONS 375
16.1 Gravity dams in general 375
16.2 Mass concrete for dams 377
 16.2.1 General 377
 16.2.2 Constituent elements of mass concrete 377
 16.2.3 Parameters of concrete mixture 378
 16.2.4 Fabrication and placing of concrete 379
16.3 Cross-section of gravity dams 379
 16.3.1 Cross-sections in general 379
 16.3.2 Theoretical cross-section 381
 16.3.3 Practical cross-section 384
16.4 Dimensioning of concrete gravity dams 387
 16.4.1 Elementary methods 387
 16.4.2 Modern methods 389
16.5 Determination of stresses 391
 16.5.1 Determination of stresses by the gravitational method 391
 16.5.2 Calculation of stresses by using the theory of elasticity 395
16.5.3 Influence of temperature changes, shrinkage and expansion of concrete on stresses in dams 397
16.5.4 Permissible stresses and cracks 398
16.6 General structural features of gravity dams 399
16.7 Stability of gravity dams on rock foundation 410
 16.7.1 Dam sliding and shearing across foundation 411
16.8 Hollow gravity dams 415

17 GRAVITY DAMS ON SOIL FOUNDATIONS 419
 17.1 Fundamentals of gravity dams on soil foundation 419
 17.2 Schemes for the underground contour of the dam 421
 17.3 Determination of basic dimensions of underground contour 423
 17.4 Construction of elements of the underground contour 424
 17.5 Construction of the dam’s body 429
 17.6 Dimensioning and stability of gravity dams on soil foundation 437

18 ROLLER-COMPACTED CONCRETE GRAVITY DAMS 441
 18.1 Introduction 441
 18.2 Characteristics of roller-compacted concrete 443
 18.3 Types of roller-compacted concrete 445
 18.4 Trends in development of dams made of roller-compacted concrete 446
 18.5 Improving the water-impermeability of dams made of roller-compacted concrete 448
 18.6 Cost of dams made of roller-compacted concrete 450
 18.7 Examples of dams made of roller-compacted concrete 452
 18.8 Particularities of high dams of roller-compacted concrete 469

19 BUTTRESS DAMS 473
 19.1 Definition, classification and general conceptions 473
 19.2 Massive-head buttress dams 475
 19.3 Flat-slab buttress dams 479
 19.4 Multiple-arch buttress dams 485
 19.5 Conditions for application of buttress dams 492

20 ARCH DAMS 497
 20.1 Arch dams in general – classification 497
 20.2 Development of arch dams through the centuries 500
 20.3 Methods of designing arch dams 505
 20.3.1 Basic design 505
 20.3.2 Arch dams with double curvature 511
 20.3.3 Form of arches in plan and adaptation to ground conditions 520
 20.4 Structural details of arch dams 524
 20.5 Static analysis of arch dams 529
 20.5.1 Method of independent arches 529
 20.5.2 Method of central cantilever 534
 20.5.3 The Trial-Load Method 537
20.5.4 The Finite Element Method 538
20.5.5 The Experimental Method 539

21 DYNAMIC STABILITY OF CONCRETE DAMS 543
21.1 Earthquake effects on concrete dams 543
21.2 Methods for dynamic analysis of concrete dams 544
 21.2.1 Linear analysis and response of the structure 546
 21.2.2 Nonlinear analysis and the response of the dam 547
21.3 Knowledge gained from practice and experiments 550

22 MONITORING AND SURVEILLANCE OF CONCRETE DAMS 553
22.1 Monitoring, surveillance, and instrumentation of concrete dams – general 553
 22.2 Monitoring by precise survey methods 554
 22.3 Surveillance with embedded instruments 557
 22.4 Automatization and computerization of monitoring 562

PART FOUR: HYDROMECHANICAL EQUIPMENT AND APPURTENANT HYDRAULIC STRUCTURES 565

23 MECHANICAL EQUIPMENT AND APPURTENANT HYDRAULIC STRUCTURES – GENERAL 567
23.1 Hydromechanical equipment – general 567
 23.1.1 Introduction 567
 23.1.2 Classification of gates and valves 568
 23.1.3 Forces acting on gates and valves 568
23.2 Mechanisms for lifting and lowering of the gates and valves. Service bridges 569
 23.3 Installation and service of gates and valves 571
 23.4 Appurtenant hydraulic structures 573
 23.4.1 Definition, function, and capacity 573
 23.4.2 Classification of spillways and bottom outlets 575
23.5 Evacuation of overflowing waters via a chute spillway 577
23.6 Energy dissipation of the spillway jet 581
23.7 Selection of type of spillway structure 589

24 SURFACE (CREST) GATES 591
24.1 Basic schemes of surface (crest) gates 591
24.2 Surface (crest) gates transferring water pressure to side walls or piers 593
 24.2.1 Ordinary plain metal gates 593
 24.2.2 Special plain gates 599
 24.2.3 Stop-log gates 600
 24.2.4 Radial gates 601
 24.2.5 Roller gates 606
24.3 Surface (crest) gates transferring the water pressure to the gate sill 610
 24.3.1 Sector (drum) gates 611
 24.3.2 Flap gates 613
24.3.3 Bear-trap gates 614
24.3.4 Inflatable gates 616

25 HIGH-HEAD GATES AND VALVES 619
25.1 General characteristics - classification 619
25.2 High-head gates transferring pressure to the structure directly through their supports
 25.2.1 Plain high-head gates 621
 25.2.2 Radial (taintor) high-head gates 625
 25.2.3 Diaphragm gate 628
25.3 Valves transferring the pressure through the shell encasing the valve
 25.3.1 Waterworks valve types 631
 25.3.2 Disc-like or butterfly valves 633
 25.3.3 Cone dispersion valve 634
 25.3.4 Needle valves and spherical valves 635
25.4 Cylindrical balanced high-head valves 636

26 SPILLWAYS PASSING THROUGH THE DAM'S BODY 637
26.1 Crest spillways 637
26.2 High-head spillway structures 645

27 SPILLWAYS OUTSIDE THE DAM'S BODY 653
27.1 Frontal (ogee) spillway structure 653
27.2 Side-channel spillway 661
27.3 Shaft (morning glory) spillway 668
27.4 Siphon spillways 680

28 BOTTOM OUTLET WORKS 685
28.1 Basic assumptions on designing bottom outlet works 685
28.2 Bottom outlet works in concrete dams 686
28.3 Bottom outlet works in embankment dams 688

29 SPECIAL HYDRAULIC STRUCTURES 697
29.1 Transport structures 697
29.2 Hydraulic structures for the admission and protection of fish 701

30 RIVER DIVERSION DURING THE CONSTRUCTION OF THE HYDRAULIC SCHEME 709
30.1 River diversion during the construction of dams and appurtenant hydraulic structures – general
30.2 Construction of the structures without river diversion from the parent river channel
 30.2.1 Method with damming of the construction (foundation) pit 710
 30.2.2 Method without damming of the construction pit 714
30.3 Construction of the structures with river diversion from the river channel 716
PART FIVE: HYDRAULIC SCHEMES

31 COMPOSITION OF STRUCTURES IN RIVER HYDRAULIC SCHEMES

31.1 Definition and classification of hydraulic schemes
31.2 General conditions and principles for the composition of hydraulic schemes
31.3 Characteristics of river hydraulic schemes for different water economy branches
31.4 Aesthetic shaping of hydraulic schemes
31.5 River hydraulic schemes without pressure head
31.6 Low-head hydraulic schemes
31.7 Medium-head river hydraulic schemes

32 HYDRAULIC SCHEMES

32.1 High-head river hydraulic schemes on mountain rivers (Type I)
32.2 High-head hydraulic schemes on middle and low parts of rivers
32.3 Pumped-storage hydraulic scheme

33 RESERVOIRS

33.1 Introduction
33.2 Formation and safety of reservoirs
33.2.1 Stability of reservoir banks
33.2.2 Water-impermeability of the reservoir
33.2.3 Seismicity of the ground in the zone of the reservoir
33.2.4 Water absorption of the ground in the zone of the reservoir
33.2.5 Evaporation
33.2.6 Sediment accumulation
33.3 Resettlement of population and relocation of structures
33.4 Sports and recreational facilities

34 NEGATIVE EFFECTS OF HYDRAULIC SCHEMES AND ENVIRONMENTAL PROTECTION

34.1 Types of negative effects on the environment
34.1.1 Changing the land into the area of the reservoir
34.1.2 Change of the flow downstream of the dam
34.1.3 Damming the migration paths of fish and wild animals
34.1.4 Change in the surrounding landscape and the microclimate
34.2 Social and ecological monitoring
34.3 Environmental protection – selection of a solution with minimum negative effects on the environment

35 RESTORATION AND RECONSTRUCTION OF HYDRAULIC SCHEMES

35.1 Need for restoration and reconstruction
35.2 Restoration of dams and hydraulic schemes
35.3 Reconstruction of hydraulic schemes

References and Abbreviations
Subject Index
Index of Dams