Contents

Division One Fundamental Concepts

1 Outline and Basics 3
 1.1 Specifying a Circuit in Plain Prose 3
 1.2 Diagram of Successive Events 4
 1.3 Table of Asserted Events 5
 1.4 Logic Variables and Logic Formulas 7
 1.5 Drawing the Circuits 9
 1.6 Sequential Circuits 10
 1.7 Verifying a Circuit 12

2 Switching Devices 14
 2.1 Pneumatic Valves 14
 2.2 Electric Relays 18
 2.3 CMOS Transistor Circuits 23

3 Functions 27
 3.1 Ordered Pairs 27
 3.2 Speaking of Functions... 31
 3.3 Switching Functions 33

4 Logic Functions and Gates 36
 4.1 Elementary Switching Functions 36
 4.2 Positive versus Negative Logic 37
 4.3 Elementary Logic Functions 38
 4.4 The Basic Gates 40
 4.5 Derived Gates 43

5 Synthesis and Duality 46
 5.1 Minterm Functions & Minterms 46
 5.2 Maxterm Functions & Maxterms 49
 5.3 Synthesis via Partial Outputs 50
 5.4 Duality 53

6 Karnaugh Maps 57
 6.1 Speaking of Sets... 57
 6.2 Introducing the Karnaugh Map 59
 6.3 Karnaugh Maps for multiple Inputs 62
 6.4 Karnaugh Sets 64

1) Those Sections or Chapters marked by an asterisk (*) contain new concepts, proofs, or methods.
7 Utilising Karnaugh Maps 66
 7.1 Specifying Switching Circuits in K-maps * 66
 7.2 Obtaining Disjunctive Formulas 67
 7.3 Obtaining Conjunctive Formulas * 68
 7.4 Logically Equivalent Expressions * 70
 7.5 Logical Implications * 72
 7.6 K-maps of Dual Functions * 74

Division Two Logic

8 Tautologies 79
 8.1 Logic Expressions 79
 8.2 Truth Tables 81
 8.3 Speaking of Tautologies . . . 82
 8.4 Replacement versus Substitution 85
 8.5 Logic Reasoning 86

9 Propositional Logic 89
 9.1 Axiomatic Approach to Propositional Logic 89
 9.2 Complementation 91
 9.3 IMPLICATION and NEGATION 93
 9.4 DeMorgan’s Theorems 94
 9.5 Commutativity of AND and OR 96
 9.6 Logic Implications of IMPLICATIONS 97
 9.7 Formulas with a single Variable 99

10 Summary of Theorems 101
 10.1 Commutative and Associative Laws * 101
 10.2 Single-Variable Formulas 103
 10.3 Distributive Laws * 104
 10.4 Generalised DeMorgan Theorems 106
 10.5 Basic Theorems on AND, OR and NOT 109

11 Algebraic Proofs 110
 11.1 Min- and Maxterms are Complementary * 110
 11.2 Disjunction of all Minterms * 111
 11.3 Conjunction of two Minterms * 113
 11.4 Maxterm as the Disjunction of Minterms * 114
 11.5 Minterm AND/OR Maxterm * 115
 11.6 Solving a System of Logic Equations * 117
 11.7 DeMorgan on DeMorgan 118

12 On Predicate Logic 121
 12.1 Inside a Proposition 121
 12.2 Symbolic Notation of Propositions 122
12.3 The Switching Algebra Connection * 124
12.4 Quantifiers 124
12.5 Quantification and Replication * 126
12.6 Free and Bound Variables 126

13 Predicate Logic 129
13.1 Axioms and Rules of Switching Algebra * 129
13.2 Theorems on Identity 132
13.3 Theorems on Quantification 135

14 Canonical Normal Forms 141
14.1 An Overview 141
14.2 Direct Derivation of Normal Forms * 144
14.3 Shannon's Expansion Theorems * 147
14.4 Shannon's Expansion to Normal Forms 149

15 Shegalkin Normal Form 151
15.1 An Overview 151
15.2 Developing the Shegalkin Polynomial * 153
15.3 Shegalkin Coefficients 155
15.4 On Combinations of Input Variables 156
15.5 Dual Shegalkin Polynomial 157
15.6 Necessary and Sufficient Connectives 160

16 Synthesis Examples 162
16.1 Multiplexers and Demultiplexers 162
16.2 Binary Coded Decimal Digits 163
16.3 Priority Decoders 165
16.4 Comparators 166

17 Concepts Old and New 171
17.1 Multiple Events * 171
17.2 Karnaugh Sets Revisited * 172
17.3 Generalised Minterms * 173
17.4 Generalised Maxterms * 175
17.5 Partitions and Equivalents 176
17.6 Prime Sets 177
17.7 Covers 177
17.8 Inclusions and Exclusions * 179
17.9 Evaluation Formulas * 180

18 Minimisation Preliminaries 182
18.1 Aspects of Minimisation 182
18.2 Incomplete Specification 183
24.3 Transient versus Stationary Behaviour 261
24.4 Latches without Feedback 263
24.5 Is a Delay in the Feedback necessary?* 264

25 Basic Theory of Latches 267
25.1 What is a Latch?* 267
25.2 Specifying Latches in Reduced K-maps* 269
25.3 Evaluation Formulas and Generic Latches* 270
25.4 An Evaluation Example 272
25.5 Identical and Isomorphic Latches* 273
25.6 Inverting a Sample Memory-Circuit 275
25.7 General Negation of Latches* 277

26 Optimised Latches 279
26.1 Designing Minimised Latches* 279
26.2 A Minimised Latch—an Example 280
26.3 Designing Hazard-Free Latches* 282
26.4 A Hazard-Free Latch—an Example 285

27 Elementary Latches 288
27.1 Classification of Elementary Latches 288
27.2 Two Systems of Symbolic Latches* 291
27.3 Symbols with Complementary Outputs* 293
27.4 Symbolic Latches with a Common Event* 294
27.5 Standard Symbols for Elementary Latches 297

28 Composition of Latches* 300
28.1 Catenation Diagram for Latches 300
28.2 Composing the D-Latch using a SR-Latch 302
28.3 Checking for a Hazard-Free Solution 303
28.4 Avoiding Undesirable Input-Events 305

Division Five Sequential Circuits with Continuously Read Inputs

29 Automata and Programs* 311
29.1 Continuously reading Automata 311
29.2 Developing an Example Flow Table 313
29.3 The Word-Recognition Tree 318
29.4 Evaluating a Sequential Circuit 320

30 Word-Recognition Tables* 325
30.1 Developing Word-Recognition Tables 325
30.2 Primitive Determinateness 327
30.3 General Determinateness 330