Protein Crystallography in Drug Discovery

Edited by
R. E. Babine and S. S. Abdel-Meguid
Contents

Preface XI
A Personal Foreword XIII
List of Contributors XV

1 Molecular Recognition of Nuclear Hormone Receptor-Ligand Complexes 1
 Robert E. Babine
 1.1 Introduction 1
 1.1.1 Nuclear Hormone Receptors: Ligand Binding Domains 1
 1.1.2 Dimerization and Interactions with Co-activators and Co-repressors 2
 1.2 Steroid Receptors 5
 1.2.1 The Role of the Ligand 5
 1.2.1.1 Estradiol Estrogen Receptor Complex 5
 1.2.1.2 Other Estrogen Receptor Agonists Complexes 8
 1.2.1.3 Estrogen Receptor Antagonists Complexes 9
 1.2.1.4 Genistein – An ER-β Partial Agonist 12
 1.2.1.5 R,R-5,11-cis-Diethyl-5,6,11,12-tetrahydrochrysene-2,8-diol: An ER-α Agonist and ER-β Antagonist 14
 1.2.2 Structural Basis for Agonism and Antagonism and Partial Agonism: The Role of the Ligand 15
 1.2.3 Progesterone/Progesterone Receptor Complex 16
 1.2.4 Androgen Receptor Complexes 17
 1.2.5 Glucocorticoid Receptor 18
 1.2.6 Steroid Ligand Selectivity 19
 1.3 The Vitamin D Receptor-Ligand Complexes 22
 1.4 The Retinoic Acid Receptors RAR and RXR 23
 1.4.1 Introduction 23
 1.4.2 RAR-γ and RXR-α Retinoid Complexes 25
 1.4.3 Selectivity of RAR Ligands and RAR Isotypes 27
 1.4.4 RXR Complexes with Unnatural Ligands 33
 1.5 PPAR: Isotype-Selective Ligands 34
 1.6 Summary 41
 1.7 Acknowledgements 43
2 Kinases

Jerry L. Adams, James Veal, and Lisa Shewchuk

2.1 Introduction 47
2.2 Structure and Function 48
2.2.1 Tertiary Structure 48
2.2.2 Catalysis and Substrate Binding 49
2.2.3 Regulation and Conformational Flexibility 50
2.2.3.1 Activation Loop Conformation 50
2.2.3.2 Glycine Rich Loop 51
2.2.3.3 C-Helix Orientation 51
2.2.3.4 Lobe Orientation 53
2.2.3.5 Solvent Channel 53
2.3 Crystallization 54
2.3.1 Defining the Construct 54
2.3.2 Mutagenesis 55
2.3.3 Phosphorylation 55
2.4 Inhibitor Design 56
2.4.1 Binding in ATP Cleft 56
2.4.1.1 ATP Binding Sites 57
2.4.1.2 Gatekeeper-Dependent Binding Pocket 60
2.4.1.3 Lipophilic Plug 61
2.4.1.4 Polar Surface Site 61
2.4.2 Conformational Considerations 63
2.4.2.1 Inhibitor-Induced Binding 63
2.4.2.2 What is the Most Appropriate Enzyme Form for Crystallography? 64
2.4.3 Paradigms for Kinase Drug Discovery 68
2.4.3.1 High Throughput Screening 68
2.4.3.2 Structure-Based Design 69
2.4.3.3 Mechanism-Based and Ligand Mimetic Design 72
2.4.3.4 Computational Chemistry and Virtual Screening 72
2.4.4 Selectivity 73
2.5 Conclusion 75
2.6 References 76

3 The Proteasome as a Drug Target

Tsunehiro Mizushima and Tomitake Tsukihara

3.1 Introduction 83
3.2 The Ubiquitin-Proteasome System 83
3.2.1 Role of the Ubiquitin-Proteasome System 84
3.2.2 26S Proteasome 85
3.2.3 20S Proteasome 85
3.3 Structure of the 20S Proteasome 86
3.3.1 Active Sites of Eukaryotic 20S Proteasomes 88
3.3.2 Novel Ntn-Hydrolase Active Site of the β7 Subunit 88
3.3.3 Predicted Structure of Immunoproteasome and Substrate Specificities 89
3.4 Proteasome Inhibitors 93
3.4.1 Structure of Proteasome Inhibitor Complexes 95
3.5 Conclusions 96
3.6 Acknowledgements 96
3.7 References 96

4 Antibiotics and the Ribosome 99
Jeffrey L. Hansen
4.1 Introduction 99
4.2 The Ribosome 99
4.2.1 Introduction 99
4.2.2 Binding of tRNA 100
4.2.3 Peptidyl Transferase Activity 101
4.2.4 Structure of the Ribosome 102
4.3 Antibiotics 103
4.3.1 Introduction 103
4.3.2 Antibiotics that Bind to the 50S Subunit 104
4.3.3 MLSB Antibiotics 105
4.3.4 Macrolides 107
4.3.4.1 Macrolides, 15- and 16-Membered 107
4.3.4.2 Binding Interactions Between the Lactone Ring and the Ribosome 108
4.3.4.3 Sugar Interactions with the Ribosome 110
4.3.4.4 A Covalent Bond 111
4.3.4.5 Macrolides, 14-Membered 112
4.3.4.6 Rational Drug Design of Macrolides 112
4.3.5 Lincosamides 114
4.3.6 Streptogramins 114
4.3.7 Chloramphenicol 115
4.3.8 Nucleoside Analogue Antibiotics 117
4.3.8.1 Puromycin 117
4.3.8.2 Aminoacyl-4-aminohexosyl-cytosine Antibiotics 118
4.3.9 Other Antibiotics that Bind to the 50S Subunit 119
4.3.9.1 Sparsomycin 119
4.3.9.2 Anisomycin 120
4.4 Prospects for Rational Drug Design of Antibiotics that Bind to the Ribosome 120
4.5 Acknowledgements 122
4.6 References 122
Structure-Based Design of Cathepsin K Inhibitors

Daniel F. Veber and Maxwell D. Cummings

5.1 Introduction

5.2 Background and Issues to be Addressed Using Protein Structure

5.3 Cysteine Protease Inhibitors: Historical Perspective

5.4 Diaminoketone-Based Inhibitors

5.5 Cyclic Diaminoketone Inhibitors

5.6 Alkoxymethyl and Thiomethyl Dipeptidyl Ketone-Based Inhibitors

5.7 Diacylcarbohydrazides

5.8 Conclusions

5.9 References

Structure-Based Design of Potent and Selective Cdk4 Inhibitors

Teruki Honma

6.1 Introduction

6.2 Homology Modeling of Cdk4

6.3 Analysis of the ATP Binding Pocket

6.4 Strategies for Structure-Based Lead Identification:
 Virtual Screening of Known Compounds and de Novo Design

6.4.1 New de Novo Design Strategies

6.4.2 Evaluation of Chemical Availability by SEEDS

6.5 Structure-Based Generation of a New Class of Potent Cdk4 Inhibitors

6.5.1 Identification of New Scaffold Candidates Using LEGEND and SEEDS

6.5.2 From the Identified Scaffold to Lead Compounds

6.6 Structure-Based Design of Cdk4 Selective Inhibitors

6.6.1 Identification of Cdk4-Specific Amino Acid Residues

6.6.2 Library Design Based on the Locations of Cdk4-Specific Amino Acid Residues

6.7 Conclusion

6.8 Acknowledgements

6.9 References

Crystallization and Analysis of Serine Proteases with Ecotin

Sandra M. Waugh and Robert J. Fletterick

7.1 What is Ecotin?

7.2 Methods

7.2.1 Expression of Wild Type Ecotin

7.2.2 Purification of Wild Type Ecotin

7.2.3 Crystallization of Ecotin and Protease Complexes

7.3 Representative Examples of Ecotin and Protease Structures

7.3.1 Ecotin Defines the S7 Through S4' Subsites of Collagenase
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.2</td>
<td>Ecotin as a Tight Binding Substrate</td>
<td>177</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Ecotin Defines Regions Distal to the Factor Xa Protease Domain</td>
<td>178</td>
</tr>
<tr>
<td>7.4</td>
<td>Crystallization and Structure Determination of E2P2 Complexes</td>
<td>180</td>
</tr>
<tr>
<td>7.5</td>
<td>Conclusion</td>
<td>183</td>
</tr>
<tr>
<td>7.6</td>
<td>References</td>
<td>184</td>
</tr>
<tr>
<td>8</td>
<td>X-ray Crystallography in the Development of Orthogonal Ligand-Receptor Pairs</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Donald F. Doyle and Lauren J. Schwimmer</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>187</td>
</tr>
<tr>
<td>8.2</td>
<td>Applications of OLRPs</td>
<td>188</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Applications in Basic Research</td>
<td>188</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Applications in Applied Research</td>
<td>189</td>
</tr>
<tr>
<td>8.3</td>
<td>Early Work</td>
<td>189</td>
</tr>
<tr>
<td>8.4</td>
<td>Structure-Guided Mutagenesis and OLRPs</td>
<td>190</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Binding Pocket Mutations</td>
<td>191</td>
</tr>
<tr>
<td>8.4.1.1</td>
<td>Nuclear Receptors</td>
<td>191</td>
</tr>
<tr>
<td>8.4.1.2</td>
<td>Estrogen Receptor OLRPs</td>
<td>193</td>
</tr>
<tr>
<td>8.4.1.3</td>
<td>Retinoic Acid Receptor OLRPs</td>
<td>195</td>
</tr>
<tr>
<td>8.4.1.4</td>
<td>Retinoid X Receptor OLRPs</td>
<td>195</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Distant Mutations</td>
<td>197</td>
</tr>
<tr>
<td>8.5</td>
<td>Other Examples of OLRPs</td>
<td>200</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Chemical Inducers of Dimerization to Control Transcription</td>
<td>200</td>
</tr>
<tr>
<td>8.5.2</td>
<td>OLRPs and ATP Analogues</td>
<td>202</td>
</tr>
<tr>
<td>8.6</td>
<td>Summary</td>
<td>204</td>
</tr>
<tr>
<td>8.7</td>
<td>References</td>
<td>206</td>
</tr>
<tr>
<td>9</td>
<td>Engineering Proteins to Promote Crystallization</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>Lei Jin and Robert E. Babine</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>209</td>
</tr>
<tr>
<td>9.2</td>
<td>Removing Protein Heterogeneity by Truncation</td>
<td>210</td>
</tr>
<tr>
<td>9.3</td>
<td>Removing Protein Heterogeneity by Point Mutation</td>
<td>211</td>
</tr>
<tr>
<td>9.4</td>
<td>Improving Crystal Packing by Point Mutation</td>
<td>212</td>
</tr>
<tr>
<td>9.5</td>
<td>Acknowledgements</td>
<td>214</td>
</tr>
<tr>
<td>9.6</td>
<td>References</td>
<td>214</td>
</tr>
<tr>
<td>10</td>
<td>High-throughput Crystallography</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Harren Jhoti</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>217</td>
</tr>
<tr>
<td>10.2</td>
<td>Technological Advances</td>
<td>218</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Clone to Crystal</td>
<td>218</td>
</tr>
<tr>
<td>10.2.1.1</td>
<td>Protein Production</td>
<td>218</td>
</tr>
<tr>
<td>10.2.1.2</td>
<td>Crystallization</td>
<td>219</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Crystal to Structure</td>
<td>220</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Progress in Structural Genomics</td>
<td>221</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>10.3 High-throughput Crystallography in Lead Discovery</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>10.3.1 Protein-Ligand Crystal Structures</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>10.4 Fragment-Based Lead Discovery</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>10.4.1 Fragment-Based Lead Discovery Using X-ray Crystallography</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>10.4.2 Structure-Based Optimization of Fragment Hits</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>10.5 Conclusions</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>10.6 Acknowledgements</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>10.7 References</td>
<td>231</td>
<td></td>
</tr>
</tbody>
</table>

11 Micro-Crystallization 235

Carl L. Hansen, Morten Sommer, Kyle Self, James M. Berger, and Stephen R. Quake

11.1 Introduction 235
11.2 Microfluidics – Method and Design 237
11.3 Utility of Microfluidics for Crystallization 242
11.4 References 253

Subject Index 257