Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>Continuing Education Units</td>
<td>xix</td>
</tr>
<tr>
<td></td>
<td>About the Software</td>
<td>xxi</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Introduction to Water Distribution Modeling</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Anatomy of a Water Distribution System</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sources of Potable Water</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Customers of Potable Water</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Transport Facilities</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>What Is a Water Distribution System Simulation?</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Applications of Water Distribution Models</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Long-Range Master Planning</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Rehabilitation</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Fire Protection Studies</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Water Quality Investigations</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Energy Management</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Daily Operations</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>The Modeling Process</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>A Brief History of Water Distribution Technology</td>
<td>10</td>
</tr>
<tr>
<td>1.6</td>
<td>What Next?</td>
<td>18</td>
</tr>
</tbody>
</table>
Chapter 2 Modeling Theory

2.1 Fluid Properties

- Density and Specific Weight ... 19
- Viscosity .. 20
- Fluid Compressibility ... 22
- Vapor Pressure ... 23

2.2 Fluid Statics and Dynamics

- Static Pressure .. 23
- Velocity and Flow Regime .. 26

2.3 Energy Concepts

- Energy Losses .. 30

2.4 Friction Losses

- Darcy-Weisbach Formula ... 32
- Hazen-Williams ... 34
- Manning Equation ... 37
- Comparison of Friction Loss Methods 38

2.5 Minor Losses

- Valve Coefficient .. 40
- Equivalent Pipe Length .. 42

2.6 Resistance Coefficients

- Darcy-Weisbach ... 42
- Hazen-Williams ... 43
- Manning ... 43
- Minor Losses .. 43

2.7 Energy Gains – Pumps

- Pump Head-Discharge Relationship 44
- System Head Curves .. 45
- Pump Operating Point .. 48
- Other Uses of Pump Curves ... 48

2.8 Network Hydraulics

- Conservation of Mass .. 49
- Conservation of Energy .. 50
- Solving Network Problems .. 51

2.9 Water Quality Modeling

- Transport in Pipes ... 52
- Mixing at Nodes ... 53
- Mixing in Tanks ... 53
- Chemical Reaction Terms .. 55
- Other Types of Water Quality Simulations 61
- Solution Methods .. 63
Chapter 3 Assembling a Model

3.1 Maps and Records
- System Maps ... 75
- Topographic Maps 76
- As-Built Drawings 76
- Electronic Maps and Records 77

3.2 Model Representation
- Network Elements 80
- Network Topology 82

3.3 Reservoirs

3.4 Tanks

3.5 Junctions
- Junction Elevation 89

3.6 Pipes
- Length .. 91
- Diameter ... 91
- Minor Losses ... 94

3.7 Pumps
- Pump Characteristic Curves 95
- Model Representation 98

3.8 Valves
- Isolation Valves 101
- Directional Valves 102
- Altitude Valves 103
- Air Release Valves and Vacuum
 - Breaking Valves 104
- Control Valves 104
- Valve Books .. 107

3.9 Controls (Switches)
- Pipe Controls ... 107
- Pump Controls .. 107
- Regulating Valve Controls 108
- Indicators of Control Settings 108

3.10 Types of Simulations
- Steady-State Simulation 109
- Extended-Period Simulation 109
- Other Types of Simulations 112
Chapter 5 Testing Water Distribution Systems

5.1 Testing Fundamentals

- Pressure Measurement
- Flow Measurement
- Potential Pitfalls in System Measurements

5.2 Fire Hydrant Flow Tests

- Pitot Gages and Diffusers
- Potential Problems with Fire Flow Tests
- Using Fire Flow Tests for Calibration

5.3 Head Loss Tests

- Two-Gage Test
- Parallel-Pipe Test
- Potential Problems with Head Loss Tests
- Using Head Loss Test Results for Calibration

5.4 Pump Performance Tests

- Head Characteristic Curve
- Pump Efficiency Testing
- Potential Problems with Pump Performance Tests
- Using Pump Performance Test Data for Calibration

5.5 Extended-Period Simulation Data

- Distribution System Time-Series Data
- Conducting a Tracer Test

5.6 Water Quality Sampling

- Laboratory Testing
- Field Studies

5.7 Sampling Distribution System Tanks and Reservoirs

- Water Quality Studies
- Tracer Studies
- Temperature Monitoring

5.8 Quality of Calibration Data
Chapter 6 Using SCADA Data for Hydraulic Modeling 235

6.1 Types of SCADA Data 236
6.2 Polling Intervals and Unsolicited Data 236
6.3 SCADA Data Format 238
6.4 Managing SCADA Data 239
6.5 SCADA Data Errors 239
 Data Compression Problems .. 240
 Timing Problems ... 240
 Missing Data ... 242
 Instrumentation .. 244
 Unknown Elevations .. 246
 Other Error Sources ... 246
6.6 Responding to Data Problems 247
6.7 Verifying Data Validity 248

Chapter 7 Calibrating Hydraulic Network Models 251

7.1 Model-Predicted versus Field-Measured Performance 252
 Comparisons Based on Head 252
 Location of Data Collection 253
7.2 Sources of Error in Modeling 253
 Types of Errors ... 254
 Nominal versus Actual Pipe Diameters 255
 Internal Pipe Roughness Values 256
 Distribution of System Demands 258
 System Maps ... 260
 Temporal Boundary Condition Changes 261
 Model Skeletonization .. 262
 Geometric Anomalies .. 262
 Pump Characteristic Curves 263
7.3 Calibration Approaches 263
 Manual Calibration Approaches 264
 Automated Calibration Approaches 268
 Model Validation .. 278
Chapter 8 Using Models for Water Distribution System Design 297

8.1 Applying Models to Design Applications 298
 Extent of Calibration and Skeletonization 298
 Design Flow 299
 Reliability Considerations 300
 Key Roles in Design Using a Model 302
 Types of Modeling Applications 302
 Pipe Sizing Decisions 303

8.2 Identifying and Solving Common Distribution System Problems 305
 Undersized Piping 306
 Inadequate Pumping 306
 Consistent Low Pressure 307
 High Pressures During Low Demand Conditions 308
 Oversized Piping 308

8.3 Pumped Systems 310
 Pumping into a Closed System with
 No Pressure Control Valve 312
 Pumping into a Closed System with Pressure Control 313
 Variable-Speed Pumps 313
 Pumping into a System with a Storage Tank 316
 Pumping into Closed System with Pumped Storage 316
 Pumping into Hydropneumatic Tanks 318
 Well Pumping 319
 Pumps in Parallel 322
 Head Loss on Suction Side of Pump 324
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Extending a System to New Customers</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>Extent of Analysis</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>Elevation of Customers</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>Assessing an Existing System</td>
<td>328</td>
</tr>
<tr>
<td>8.5</td>
<td>Establishing Pressure Zones and Setting Tank Overflows</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>Establishing a New Pressure Zone</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>Laying Out New Pressure Zones</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>Tank Overflow Elevation</td>
<td>337</td>
</tr>
<tr>
<td>8.6</td>
<td>Developing System Head Curves for Pump Selection/Evaluation</td>
<td>342</td>
</tr>
<tr>
<td>8.7</td>
<td>Serving Lower Pressure Zones</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>PRV Feeding into a Dead-End Pressure Zone</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Lower Zone with a Tank</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>Lower Zone Fed with Control Valves</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>Conditions Upstream of the PRV or Control Valve</td>
<td>348</td>
</tr>
<tr>
<td>8.8</td>
<td>Rehabilitation of Existing Systems</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>Data Collection</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>Modeling Existing Conditions</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Overview of Alternatives</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Evaluation</td>
<td>354</td>
</tr>
<tr>
<td>8.9</td>
<td>Tradeoffs Between Energy and Capital Costs</td>
<td>354</td>
</tr>
<tr>
<td>8.10</td>
<td>Use of Models in the Design and Operation of Tanks</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>Systems Models</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td>Computational Fluid Dynamics Models</td>
<td>358</td>
</tr>
<tr>
<td>8.11</td>
<td>Optimized Design and Rehabilitation Planning</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>Optimal Design Formulation</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>Optimal Design Methods</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>Optimization Issues</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>Multiple Objectives and the Treatment of the Design Optimization Problem</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>Multiobjective Decision-Making</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>Using Optimization</td>
<td>372</td>
</tr>
</tbody>
</table>
Chapter 9 Modeling Customer Systems 393

9.1 Modeling Water Meters 394
9.2 Backflow Preventers 397
9.3 Representing the Utility’s Portion of the Distribution System 398
9.4 Customer Demands 399
 Commercial Demands for Proposed Systems 399
9.5 Sprinkler Design 401
 Starting Point for Model 401
 Sprinkler Hydraulics 402
 Approximating Sprinkler Hydraulics 403
 Piping Design 404
 Fire Sprinklers 406
 Sprinkler Pipe Sizing 408
 Irrigation Sprinklers 408

Chapter 10 Operations 417

10.1 The Role of Models in Operations 417
10.2 Low Pressure Problems 419
 Identifying the Problem 419
 Modeling Low Pressures 420
 Finding Closed Valves 420
 Solving Low Pressure Problems 422
10.3 Low Fire Flow Problems 424
 Identifying the Problem 424
 Solutions to Low Fire Flow 425
10.4 Adjusting Pressure Zone Boundaries 427
10.5 Taking a Tank Off-Line 430
 Fire Flows 431
 Low Demand Problems 431
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6 Shutting Down a Section of the System</td>
<td>433</td>
</tr>
<tr>
<td>Representing a Shutdown</td>
<td>433</td>
</tr>
<tr>
<td>Simulating the Shutdown</td>
<td>434</td>
</tr>
<tr>
<td>10.7 Power Outages</td>
<td>435</td>
</tr>
<tr>
<td>Modeling Power Outages</td>
<td>435</td>
</tr>
<tr>
<td>Duration of an Outage</td>
<td>436</td>
</tr>
<tr>
<td>10.8 Power Consumption</td>
<td>436</td>
</tr>
<tr>
<td>Determining Pump Operating Points</td>
<td>438</td>
</tr>
<tr>
<td>Calculating Energy Costs</td>
<td>439</td>
</tr>
<tr>
<td>Multiple Distinct Operating Points</td>
<td>440</td>
</tr>
<tr>
<td>Continuously Varying Pump Flow</td>
<td>441</td>
</tr>
<tr>
<td>Developing a Curve Relating</td>
<td></td>
</tr>
<tr>
<td>Flow to Efficiency</td>
<td>442</td>
</tr>
<tr>
<td>Variable-Speed Pumps</td>
<td>443</td>
</tr>
<tr>
<td>Using Pump Energy Data</td>
<td>444</td>
</tr>
<tr>
<td>Understanding Rate Structures</td>
<td>445</td>
</tr>
<tr>
<td>Optimal Pump Scheduling</td>
<td>446</td>
</tr>
<tr>
<td>10.9 Water Distribution System Flushing</td>
<td>449</td>
</tr>
<tr>
<td>Modeling Flushing</td>
<td>449</td>
</tr>
<tr>
<td>Representing a Flowed Hydrant</td>
<td>449</td>
</tr>
<tr>
<td>Estimating Hydrant Discharge Using</td>
<td></td>
</tr>
<tr>
<td>Flow Emitters</td>
<td>451</td>
</tr>
<tr>
<td>Hydrant Location Relative to Nodes</td>
<td>453</td>
</tr>
<tr>
<td>Steady-State versus EPS Runs</td>
<td>454</td>
</tr>
<tr>
<td>Indicators of Successful Flushing</td>
<td>455</td>
</tr>
<tr>
<td>10.10 Sizing Distribution System Meters</td>
<td>457</td>
</tr>
<tr>
<td>Subsystem Metering</td>
<td>457</td>
</tr>
<tr>
<td>Using Models for Meter Sizing</td>
<td>457</td>
</tr>
<tr>
<td>Implications for Meter Selection</td>
<td>458</td>
</tr>
<tr>
<td>10.11 Models for Investigation of System Contamination</td>
<td>459</td>
</tr>
<tr>
<td>10.12 Leakage Control</td>
<td>460</td>
</tr>
<tr>
<td>10.13 Maintaining an Adequate Disinfectant Residual</td>
<td>462</td>
</tr>
<tr>
<td>Disinfectant Residual Assessment</td>
<td>463</td>
</tr>
<tr>
<td>Booster Chlorination</td>
<td>465</td>
</tr>
<tr>
<td>DBP Formation</td>
<td>467</td>
</tr>
<tr>
<td>Optimization Techniques</td>
<td>467</td>
</tr>
</tbody>
</table>
Chapter 11 Water System Security 499

11.1 Water System Vulnerability 499

11.2 Potential Water Security Events 500
Physical Disruption .. 500
Contamination .. 501

11.3 Assessment of Vulnerability 508
Inspections and Checklists 510
Formal Assessment Tools and Methods 510

11.4 Application of Simulation Models 512
Water Distribution System Models 514
Tank and Reservoir Mixing Models 519
Surface Water Hydraulic and Water Quality Models ... 519

11.5 Security Measures 519

Chapter 12 Integrating GIS and Hydraulic Modeling 527

12.1 GIS Fundamentals 528
Data Management ... 530
Geographic Data Models 532

12.2 Developing and Maintaining an Enterprise GIS 533
Keys to Successful Implementation 533
Needs Assessment ... 534
Design .. 535
Pilot Study ... 541
Production .. 542
Rollout ... 542

12.3 Model Construction 542
Model Sustainability and Maintenance 544
Communication Between GIS and Modeling Staff ... 544
Using an Existing GIS for Modeling 546
Network Components ... 546
Retrieval of Water Use Data 549
Retrieval of Elevation Data 555
Modeling GIS Versus Enterprise GIS 557
12.4 GIS Analysis and Visualization 561
- Using Attributes to Create Thematic Maps 561
- Using the Spatial Coincidence of Features to Assign New Data 563
- Using Spatial Relationships Between Features to Select Certain Elements and Assign New Data 563
- Using Relationships to Trace Networks 564
- Using Combinations of GIS Capabilities to Perform Complex Analyses 565

12.5 The Future of GIS and Hydraulic Modeling 567

Chapter 13 Transients in Hydraulic Systems 573

13.1 Introduction to Transient Flow 573
- Impacts of Transients 574
- Overview of Transient Evaluation 576

13.2 Physics of Transient Flow 577
- The Rigid Model 578
- The Elastic Model 579
- History of Transient Analysis Methods 583

13.3 Magnitude and Speed of Transients 585
- Characteristic Time 585
- Joukowsky’s Equation 586
- Celerity and Pipe Elasticity 586
- Comparing the Elastic and Rigid Models 588
- Wave Reflection and Transmission 589
- Attenuation and Packing 597

13.4 Numerical Model Calibration 600

13.5 Gathering Field Measurements 602

13.6 Transient Control 602
- Piping System Design and Layout 603
- Protector Devices 607

13.7 Operational Considerations 615
- Flow Control Stations 616
- Air Release Valves 619
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Units and Symbols</td>
<td>625</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Conversion Factors</td>
<td>633</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Tables</td>
<td>637</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Model Optimization Techniques</td>
<td>643</td>
</tr>
<tr>
<td>Appendix E</td>
<td>SCADA Basics</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>703</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>729</td>
</tr>
</tbody>
</table>