5. Vitamins and minerals
6. Fibres
L. Factors critical to the success of functional foods
 1. Safety
 2. Proof of efficacy
 3. Consumer education
 4. Market positioning
 5. Price
 6. Health claims strategy
M. Conclusions

References

2 Carotenoids
YAACKOB B. CHE MAN AND CHIN-PING TAN
A. Introduction
B. Structure, nomenclature and chemistry
C. Sources of carotenoids
 1. Natural sources
 2. Synthesis of carotenoids
D. Technological advances in carotenoid extraction
E. Functional properties of carotenoids
 1. Colour
 2. Antioxidant activity
 3. Disease prevention
F. Applications and stability of carotenoids in food products
G. Conclusions and future research

References

3 Tocopherols, tocotrienols and vitamin E
WILLIAM L. STONE AND ANDREAS PAPAS
A. Vitamin E is more than α-tocopherol
B. Vitamin E in food is different from vitamin E in most supplements
C. Vitamin E and lipid peroxidation
D. Vitamin E compounds differ in their reactivities towards reactive nitrogen species
E. Vitamin E in animal fat and plant fat, and its health-related significance
F. Dietary factors influencing α- and γ-tocopherol levels
G. Cellular and biochemical differences in vitamin E compounds
H. Vitamin E biodiscrimination
I. Vitamin E metabolism
J. Nutritional genomics and tocopherols

References
4 Other natural antioxidants – rice bran oil, sesame oil, rosemary extract, flavonoids

CLIFFORD HALL III

A. Introduction 73
B. Rice (Oryza sativa) bran oil 73
 1. General characteristics
 2. Health benefits
 3. Stability
 4. Extraction using solvents
 5. Supercritical fluid extraction
 6. Refining
 7. Antioxidant activity
C. Sesame (Sesamum indicum) seed oil 83
 1. General characteristics
 2. Health benefits
 3. Effect of processing on sesame seed oil components
 4. Antioxidant activity
D. Rosemary (Rosmarinus officinalis L.) extract 90
 1. General characteristics
 2. Health benefits
 3. Extraction of rosemary components
 4. Antioxidant activity
E. Flavonoids 97
 1. General characteristics
 2. Health benefits
 3. Effects of processing on flavonoid stability
 4. Antioxidant activity
F. Conclusions 101
References 101

5 Diacylglycerols
HIROYUKI WATANABE AND NOBORU MATSUO

A. Introduction 113
B. Biochemical characteristics of DAG 114
 1. Occurrence of DAG
 2. Structure of DAG
 3. Energy value of DAG
 4. Absorption coefficient of DAG
C. Nutritional functions of DAG as studied in animals 118
 1. Identification of the digestion products in the small intestine
 2. Re-esterification rate
 3. Anti-obesity effects of DAG in animal studies
4. Long-term effects of DAG ingestion on the proteins and enzymes involved in lipid metabolism

D. Clinical studies
1. Double-blind controlled study on the effects of dietary DAG on postprandial serum and chylomicron TAG responses in healthy humans
2. Dynamics of postprandial remnant-like lipoprotein particles (RLP) in serum after DAG ingestion
3. Dietary DAG suppresses the accumulation of body fat in men: a double-blind controlled trial
4. Long-term ingestion of dietary DAG lowers serum TAG levels in type II diabetic patients with hypertriglyceridemia
5. The solubilization of phytosterols in DAG instead of TAG oil improves their serum cholesterol-lowering effect

E. Applications of DAG

F. Conclusions

References
4. Triterpenes
5. Plant stanols – saturated sterols
6. Effects of different sterol groups on cholesterol absorption

C. Dietary sources of 4-desmethyl sterols
D. Commercial sources of plant sterols
E. Health effects of sterols
 1. Cholesterol-lowering mechanism of plant sterols and stanols
 2. Early studies of phytosterols
 3. Clinical studies with unesterified and esterified sterols and stanols
 4. Effects of background diet
 5. Additive effect with cholesterol-lowering medication
 6. Dose–response of esterified plant sterols and stanols
 7. Short-term and long-term efficacy
 8. Frequency of intake
 9. Effects on plasma plant sterols
 10. The benefits of sterol and stanol ester consumption

F. The development of sterol-enriched foods
 1. Foods or capsules?
 2. What type of food is optimal as a plant sterol carrier?
 3. Physical and technological properties of sterols and their fatty acid esters

G. Commercial applications
 1. Oils and fats
 2. Dairy products
 3. Snacks
 4. Drinks
 5. Others

H. Summary

References

8 Omega-3 (n-3) fatty acids

DUO LI, ORTWIN BODE, HAMISH DRUMMOND AND ANDREW J. SINCLAIR

A. Introduction
B. Physiological functions of n-3 fatty acids
C. Metabolism of n-3 fatty acids
 1. ALA metabolic pathways
 2. How effectively is ALA metabolized to DHA?
 3. EPA metabolic pathways
D. Biological importance of n-3 PUFA in human health
 1. Blood pressure
 2. Plasma/serum and lipoprotein lipids
CONTENTS

3. Thrombosis
4. Secondary prevention of cardiovascular disease
5. Cancers
6. Inflammation
7. Neuropsychiatric disorders
8. Obesity

E. Why is there a need for n-3 fatty acids in functional foods? 243
 1. Current intakes of n-3 PUFA
 2. Dietary sources of n-3 PUFA

F. Novel sources of long-chain n-3 PUFA 246

G. Practical aspects of introducing n-3 fatty acids into foods 249
 1. Stability of n-3 fatty acids
 2. Antioxidants
 3. Direct addition of n-3 PUFA oils to food products
 4. Addition of n-3 PUFA as microencapsulated powders to food products

H. Products based on n-3 PUFA in the marketplace 252

I. Bioavailability of n-3 fatty acids from functional foods 253

References 253

9 Oils containing oleic, palmitoleic, γ-linolenic and stearidonic acids 263

BAORU YANG, FRANK D. GUNSTONE AND HEIKKI KALLIO

A. High-oleic oils 263

B. Palmitoleic acid 266
 1. Occurrence
 2. Levels of palmitoleic acid in human and animal tissues and health conditions
 3. Effects of palmitoleic acid on cancer
 4. Effects of palmitoleic acid on hyperlipemia, hypertension and diabetes mellitus
 5. Sea buckthorn (Hippophae rhamnoides) oils
 6. Enrichment of palmitoleic acid
 7. Summary

C. γ-Linolenic acid (GLA) 272
 1. Metabolic pathway of GLA
 2. Occurrence of GLA in seed oils and microorganisms
 3. Sources with higher GLA levels
 4. Nutritional and medical uses of GLA
 5. Functional foods containing GLA

D. Stearidonic acid 280
 1. Dietary sources
2. Preparation of stearidonic acid oils
3. Metabolism of stearidonic acid
4. Nutritional and health effects of stearidonic acid
5. Stearidonic acid and functional foods

References 284

10 Conjugated linoleic acid 291

CLAIRE E. FERNIE

A. Introduction 291
B. Potential health benefits 291
C. CLA availability and functional foods 293
D. CLA and animal husbandry 295
 1. Ruminant CLA production
 2. CLA manipulation in ruminant-derived products
 3. Poultry and egg production
 4. Pig breeding
 5. Aquaculture
E. Commercial synthesis and isomer enrichment 303
 1. Production of CLA
 2. Triacylglycerol formation
 3. Isomer enrichment
 4. Novel synthetic methods
 5. Oxidative stability
F. Commercial availability and new product development 309
G. Safety issues 310
H. Conclusions 310
I. Web sites 311
 1. Analysis and research
 2. Commercial companies

References 312

Index 319