Practical Variable Speed Drives and Power Electronics

Malcolm Barnes CPEng, BSc(ElecEng), MSEE, Automated Control Systems, Perth, Australia
Contents

Preface xi

1 Introduction

1.1 The need for variable speed drives 1
1.2 Fundamental principles 2
1.3 Torque-speed curves for variable speed drives 7
1.4 Types of variable speed drives 11
1.5 Mechanical variable speed drive methods
 1.5.1 Belt and chain drives with adjustable diameter sheaves 13
 1.5.2 Metallic friction drives 14
1.6 Hydraulic variable speed drive methods
 1.6.1 Hydrodynamic types 15
 1.6.2 Hydrostatic type 15
1.7 Electromagnetic or 'Eddy Current' coupling 16
1.8 Electrical variable speed drive methods
 1.8.1 AC commutator motor – schrage motor 20
 1.8.2 Ward-Leonard system 20
 1.8.3 Electrical variable speed drives for DC motors (DC drives) 21
 1.8.4 Electrical variable speed drives for AC motors (AC drives) 23
 1.8.5 Slip control AC variable speed drives 28
 1.8.7 Cycloconverters 34
 1.8.8 Servo-drives 34

2 3-phase AC induction motors

2.1 Introduction 36
2.2 Basic construction
 2.2.1 The stator 37
 2.2.2 The rotor 38
 2.2.3 The other parts 38
2.3 Principles of operation 39
2.4 The equivalent circuit 41
2.5 Electrical and mechanical performance 45
2.6 Motor acceleration 48
2.7 AC induction generator performance 50
2.8 Efficiency of electric motors 51
2.9 Rating of AC induction motors 52
2.10 Electric motor duty cycles
 S1: Continuous running duty 54
 S2: Short-time duty 55
 S3: Intermittent periodic duty not affected by the starting process 55
Contents

S4: Intermittent periodic duty affected by the starting process 56
S5: Intermittent periodic duty affected by the starting process and also by electric braking 57
S6: Continuous operation, periodic duty with intermittent load 58
S7: Uninterrupted periodic duty, affected by the starting process and also by electric braking 58
S8: Uninterrupted periodic duty with recurring speed and load changes 59

2.11 Cooling and ventilation of electric motors (IC) 60
2.12 Degree of protection of motor enclosures (IP) 62
2.13 Construction and mounting of AC induction motors 63
2.14 Anti-condensation heaters 65
2.15 Methods of starting AC induction motors 65
2.16 Motor selection 66

3 Power electronic converters 68

3.1 Introduction 68
3.2 Definitions 68
3.3 Power diodes 71
3.4 Power thyristors 73
3.5 Commutation 76
3.6 Power electronic rectifiers (AC/DC converters) 77
 3.6.1 Line commutated diode rectifier bridge 81
 3.6.2 The line commutated thyristor rectifier bridge 85
 3.6.3 Practical limitations of line commutated converters 91
 3.6.4 Applications for line commutated rectifiers 92
3.7 Gate commutated inverters (DC/AC converters) 94
 3.7.1 Single-phase square wave inverter 95
 3.7.2 Single-phase pulse width modulation (PWM) inverter 97
 3.7.3 Three-phase inverter 101
3.8 Gate controlled power electronic devices 104
 3.8.1 Gate turn-off thyristor (GTO) 104
 3.8.2 Field controlled thyristors (FCT) 105
 3.8.3 Power bipolar junction transistors (BJT) 105
 3.8.4 Field effect transistor (FET) 108
 3.8.5 Insulated gate bipolar transistor (IGBT) 109
 3.8.6 Comparison of power ratings and switching speed of gate controlled power electronic devices 112
3.9 Other power converter circuit components 112

4 Electromagnetic compatibility (EMC) 114

4.1 Introduction 114
4.2 The sources of electromagnetic interference 116
4.3 Harmonics generated on the supply side of AC converters 118
 4.3.1 Definitions 118
 4.3.2 The analysis of the harmonic distortion 119
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.3</td>
<td>Effects of harmonics on other equipment</td>
<td>121</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Acceptable levels of distortion in the mains supply system</td>
<td>126</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Methods of reducing harmonic voltages in the power supply</td>
<td>127</td>
</tr>
<tr>
<td>4.4</td>
<td>Power factor and displacement factor</td>
<td>129</td>
</tr>
<tr>
<td>4.5</td>
<td>Voltages and current on the motor side of PWM inverters</td>
<td>131</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Effect of the high PWM switching frequency on long motor cables</td>
<td>131</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Selection of PWM switching frequency</td>
<td>132</td>
</tr>
<tr>
<td>4.5.3</td>
<td>High rates of rise of voltage (dv/dt) at inverter output</td>
<td>133</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Protection of motors against high PWM switching frequency</td>
<td>135</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Compliance with EMC standards</td>
<td>137</td>
</tr>
<tr>
<td>4.5.6</td>
<td>EMI (or RFI) filters for PWM inverters</td>
<td>138</td>
</tr>
<tr>
<td>4.5.7</td>
<td>Concluding comments about high PWM switching frequency</td>
<td>138</td>
</tr>
<tr>
<td>5</td>
<td>Protection of AC converters and motors</td>
<td>140</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>140</td>
</tr>
<tr>
<td>5.2</td>
<td>AC frequency converter protection circuits</td>
<td>140</td>
</tr>
<tr>
<td>5.2.1</td>
<td>AC and DC under-voltage protection</td>
<td>141</td>
</tr>
<tr>
<td>5.2.2</td>
<td>AC and DC bus over-voltage protection</td>
<td>142</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Output over-current protection</td>
<td>144</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Output earthfault protection</td>
<td>146</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Heat-sink over-temperature protection</td>
<td>147</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Motor thermaloverload protection</td>
<td>147</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Overall protection and diagnostics</td>
<td>148</td>
</tr>
<tr>
<td>5.3</td>
<td>Operator information and fault diagnostics</td>
<td>148</td>
</tr>
<tr>
<td>5.4</td>
<td>Electric motor protection</td>
<td>150</td>
</tr>
<tr>
<td>5.5</td>
<td>Thermal overload protection – current sensors</td>
<td>152</td>
</tr>
<tr>
<td>5.6</td>
<td>Thermal overload protection – direct temperature sensing</td>
<td>153</td>
</tr>
<tr>
<td>6</td>
<td>Control systems for AC variable speed drives</td>
<td>156</td>
</tr>
<tr>
<td>6.1</td>
<td>The overall control system</td>
<td>156</td>
</tr>
<tr>
<td>6.2</td>
<td>Power supply to the control system</td>
<td>157</td>
</tr>
<tr>
<td>6.3</td>
<td>The DC bus charging control system</td>
<td>159</td>
</tr>
<tr>
<td>6.4</td>
<td>The PWM rectifier for AC converters</td>
<td>161</td>
</tr>
<tr>
<td>6.5</td>
<td>Variable speed drive control loops</td>
<td>163</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Open-loop control</td>
<td>163</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Closed-loop control</td>
<td>163</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Cascaded closed-loop control</td>
<td>165</td>
</tr>
<tr>
<td>6.6</td>
<td>Vector control for AC drives</td>
<td>167</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Basic fixed V/f drives</td>
<td>170</td>
</tr>
<tr>
<td>6.6.2</td>
<td>V/f sensorless flux-vector drives (open loop vector)</td>
<td>171</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Closed-loop field oriented vector drives</td>
<td>172</td>
</tr>
<tr>
<td>6.7</td>
<td>Current feedback in AC variable speed drives</td>
<td>174</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Methods of measuring current in variable speed drives</td>
<td>174</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Current feedback in general purpose VVVF drives</td>
<td>175</td>
</tr>
</tbody>
</table>
Contents

6.7.3 Current feedback in high performance vector drives 176
6.7.4 DC bus current feedback 176
6.8 Speed feedback from the motor 176

7 Selection of AC converters 178

7.1 Introduction 178
7.2 The basic selection procedure 179
7.3 The loadability of converter fed squirrel cage motors 180
7.4 Operation in the constant power region 183
7.5 The nature of the machine load 184
 7.5.1 The load torque 184
 7.5.2 Variable torque machine loads 187
 7.5.3 Constant torque machine loads 187
 7.5.4 The speed range 188
 7.5.5 The inertia of the machine load 191
7.6 The requirements for starting 194
7.7 The requirements for stopping 196
 7.7.1 DC injection braking 197
 7.7.2 Motor over-flux braking 198
 7.7.3 Dynamic braking 198
 7.7.4 Regenerative braking 201
7.8 Control of speed, torque and accuracy 203
7.9 Selecting the correct size of motor and converter 203
7.10 Summary of the selection procedures 205
 STEP 1. Specify the initial data for the drive application 205
 STEP 2. Selecting the number of poles of the motor 205
 STEP 3. Selecting the motor power rating 206
 STEP 4. Select a suitable frequency converter 206
 STEP 5. Final checks 207
 STEP 6. An example of a selection calculation 207

8 Installation and commissioning 209

8.1 General installation and environmental requirements 209
 8.1.1 General safety recommendations 209
 8.1.2 Hazardous areas 210
 8.1.3 Environmental conditions for installation 210
 8.1.4 De-rating for high temperature 210
 8.1.5 De-rating for high altitude 211
8.2 Power supply connections and earthing requirements 211
 8.2.1 Power supply cables 212
 8.2.2 Cables between converter and motor 213
 8.2.3 Control cables 213
 8.2.4 Earthing requirements 214
 8.2.5 Common cabling errors 214
8.3 Start/stop control of AC drives 214
8.4 Installing AC converters into metal enclosures 216
 8.4.1 Calculating the dimensions of the enclosure 217
 8.4.2 Ventilation of enclosures 219
 8.4.3 Alternative mounting arrangements 221
8.5 Control wiring for variable speed drives 222
 8.5.1 Hard-wired connections to PLC control systems 223
 8.5.2 Serial communications with PLC control systems 224
 8.5.3 Interface converters 225
 8.5.4 Local area networks 226
8.6 Commissioning variable speed drives 227
 8.6.1 The purpose of commissioning 227
 8.6.2 Selecting the correct application settings 227
 8.6.3 Selecting the correct parameter settings 227

9 Special topics and new developments 229
 9.1 Soft-switching 229
 9.2 The matrix converter 231

Appendix A Motor protection – direct temperature sensing 233

Appendix B Current measurement transducers 244

Appendix C Speed measurement transducers 248

Appendix D International and national standards 262

Appendix E Glossary 266

Index 277