CONTENTS

Preface

xiv

1 Introduction

1.1 Hybrid Microcircuit Family, 2
1.1.1 Printed Circuit Board, 3
1.1.2 Thick Film, 3
1.1.3 Thin Film, 3
1.1.4 Integrated Circuit, 3
1.1.5 Modules, 4
1.2 Need for Hybrid Microcircuits, 4
1.2.1 Multilayer Circuits, 6
1.2.2 Military Applications, 6
1.2.3 Data Processing, 7
1.2.4 Telecommunications, 7
1.2.5 Automotive Industry, 8
1.2.6 Medical Science, 9
1.2.7 Aerospace Systems, 10
1.2.8 High-Frequency Circuits, 10
1.3 Why Hybrid Microcircuits? 11
1.4 Applications of Hybrid Microcircuits, 13
1.4.1 Automotive Industry, 13
1.4.2 Commercial Products, 14
1.4.3 Medical Science, 15
1.4.4 Telecommunications, 17
1.4.5 Consumer Electronics, 19
2 Mathematical Foundations, Circuit Design, and Layout Rules for Hybrid Microcircuits

2.1 Mathematical Foundations, 40
2.1.1 Factors Affecting the Value of a Resistor, 41
2.1.2 Mathematical Model for Thick-Film Deposition, 51
2.1.3 Theoretical Model for Screen-Printed Film Thickness, 52
2.1.4 Thick-Film Resistor Design, 52
2.1.5 Theoretical Model for Thin-Film Thickness, 53
2.1.6 Dissipation Factor or Dielectric Loss within a Dielectric Material, 54
2.1.7 Inductors, 57
2.1.8 Theoretical Model for Transport Properties during Hermetic Sealing, 61

2.2 Circuit Design and Layout Rules, 62
2.2.1 Hybrid Circuit Design Elements, 63
2.2.2 Thick-Film Hybrid Circuit Design, 67
2.2.3 Basic Rules for Laying Out Hybrid Microcircuits, 74

References, 82
Recommended Reading, 88

3 Computer-Aided Design and Pattern Generation Techniques

3.1 Computer-Aided Design Techniques, 89
3.1.1 Size and Complexity of Hybrid Microcircuits, 90
3.1.2 CALMA Online Design Process, 97
3.1.3 Computer-Aided Engineering to Design Hybrid Microcircuits, 98
3.1.4 Circuit Layout Design, 100

3.2 Pattern Generation Techniques, 103
3.2.1 Additive Processes, 105
3.2.2 Subtractive Processes, 106
3.2.3 Photolithography, 109
4 Thick-Film Fundamentals

4.1 Thick-Film Substrates, 127
 4.1.1 Substrate Materials, 128
 4.1.2 Physical Properties, 131
 4.1.3 Substrate Fabrication, 134
 4.1.4 Electrical Properties, 135
 4.1.5 Multilayer Technology Using LTCC, 136
4.2 Thick-Film Conductors, 138
 4.2.1 Conduction in Metals, 138
 4.2.2 Conductor Materials, 139
 4.2.3 Conductor Pastes, 144
4.3 Thick-Film Resistors, 145
 4.3.1 Physical Properties, 147
 4.3.2 Resistor Characteristics, 149
4.4 Dielectric Inks and Pastes, 149
 4.4.1 Low-κ Dielectric Materials, 151
 4.4.2 High-κ Dielectric Materials, 151
4.5 Thick-Film Inductors, 152

References, 153
Recommended Reading, 160

5 Thick-Film Deposition Techniques

5.1 Thick-Film Processing, 162
5.2 Screen Printing, 163
 5.2.1 Screen Printer, 166
 5.2.2 Drying and Firing, 170

References, 175
Recommended Reading, 178

6 Thin-Film Fundamentals

6.1 Thin-Film Substrates, 182
 6.1.1 Substrate Materials, 182
6.2 Physical Characteristics, 183
 6.2.1 Characteristics of Substrates, 183
 6.2.2 Characteristics of Metals, 185
6.3 Thin-Film Conductors, 188
 6.3.1 Conductor Materials and Properties, 188
6.4 Thin-Film Resistors, 192
 6.4.1 Resistor Properties, 193
 6.4.2 Resistor Materials, 198
6.5 Thin-Film Capacitors, 201
 6.5.1 Capacitor Properties, 201
CONTENTS

6.5.2 Capacitor Materials, 203
6.6 Thin-Film Inductors, 205
6.7 Technologies of the Twenty-First Century, 207
References, 211
Recommended Reading, 219

7 Thin-Film Deposition Techniques 221

7.1 Physical Vapor Deposition, 221
 7.1.1 Turbo Pump, 223
 7.1.2 Cryogenic Pump, 224
7.2 Flash Evaporation, 226
7.3 Sputtering, 226
7.4 Chemical Vapor Deposition, 230
7.5 Ion-Beam Deposition, 233
 7.5.1 Ion-Beam Sputter Deposition, 233
 7.5.2 Ion-Beam-Assisted Deposition, 234
7.6 Pulsed-Laser Deposition (Laser Ablation), 234
7.7 High-Density Plasma-Assisted Deposition, 234
7.8 Electroplating, 235
 7.8.1 Electrode Electroplating, 235
 7.8.2 Electroless Electroplating, 236
7.9 Sol-Gel Coating, 237
7.10 Atomic Layer Deposition, 237
7.11 Summary, 237
References, 238
Recommended Reading, 243

8 Component Assembly and Interconnections 244

8.1 Component Assembly, 244
 8.1.1 Silicon-Gold Eutectic Bonding, 245
 8.1.2 Adhesive and Epoxy Bonding, 246
 8.1.3 Solder Joint Bonding, 249
 8.1.4 Solder Alloys, 255
 8.1.5 Solder Reflow System, 257
 8.1.6 Lead-Free Interconnects, 257
8.2 Interconnections, 258
 8.2.1 Thermocompression Wire Bonding, 260
 8.2.2 Thermosonic Wire Bonding, 261
 8.2.3 Ultrasonic Wire Bonding, 264
 8.2.4 Automated Single-Point Tape Automated Bonding, 266
 8.2.5 Laser Wire Bonding, 268
 8.2.6 Flip-Chip Bonding, 269
References, 269
Recommended Reading, 275
9 Adjustment of Passive Components

9.1 Airabrasive Trimming, 277
9.2 Laser Trimming, 278
 9.2.1 Carbon Dioxide Laser, 280
 9.2.2 Yttrium-Aluminum-Garnet Laser, 281
9.3 Laser Trimming Systems, 283
 9.3.1 Trimming Procedure, 288
 9.3.2 Design Criteria for Resistor Trimming, 289
9.4 Definitions, 295
References, 296
Recommended Reading, 299

10 Packaging and Thermal Considerations

10.1 Packaging Materials, 301
10.2 Packaging Systems, 303
 10.2.1 TO Packages, 304
 10.2.2 Flat-Case Packages, 305
 10.2.3 Chip Carriers, 307
 10.2.4 Small-Outline Packages, 310
 10.2.5 Systems on a Chip, 311
 10.2.6 Chip-Scale Packages, 312
 10.2.7 Wafer-Level Packaging, 313
 10.2.8 Three-Dimensional Packaging, 313
10.3 Package Sealing, 313
10.4 Thermal Effects on Electronic Packaging, 315
 10.4.1 Power Dissipation, 316
 10.4.2 Thermal Design Calculations, 316
10.5 Non-Steady-State Heat Transfer Model, 319
 10.5.1 Thermal Resistance inside the Substrate, 319
 10.5.2 Natural Convection, 320
 10.5.3 Thermal Radiation, 320
 10.5.4 Thermal Resistance of Nitrogen Gas, 321
 10.5.5 Heat Conduction inside the Kovar Shell, 321
10.6 Flip-Chip Technology, 322
10.7 Packaging Material Reliability, 323
References, 324
Recommended Reading, 329

11 Multichip Module and Microwave Hybrid Circuits

11.1 Multichip Module Circuits, 331
 11.1.1 Conductor Materials, 333
 11.1.2 Summary, 341
11.2 Microwave Hybrid Circuits, 344
 11.2.1 Major Circuit Requirements, 346
 11.2.2 Waveguides, 355
11.2.3 Transmission Lines, 361
11.2.4 Lumped Circuit Elements, 367
11.2.5 Directional Couplers, 368
11.2.6 Impedance Matching, 369
11.2.7 Microwave Integrated Circuits, 371
11.2.8 Dielectric Resonators, 375

References, 376

Glossary

Index