Contents

Foreword xi
Introduction xv
Acknowledgments xix

1 Telegraphs, track circuits and signals before 1890 1
1.1 Introduction 1
1.2 Evolution of the basic signalling and communications system 3
1.3 First use of the track circuit 8

2 Electric railways and American practice 11
2.1 The pioneer period 11
2.2 Electrical engineering and railway systems 16

3 The electrification of street railways 23
3.1 The work of F. J. Sprague 23
3.2 The extension of the Sprague system 28

4 Heilmann, Ward Leonard and the electric railway 35
4.1 Introduction 35
4.2 J. J. Heilmann and electric railway traction 35
4.3 The ‘Fusée Electrique’ of 1893 38
4.4 Heilmann and the Ward Leonard system 45

5 Electrification of British rapid-transit lines 51
5.1 Electric railways and the power supply 51
5.2 Alternating current power stations and transmission 53
5.3 The electrification of the Mersey Railway 55
5.4 Economic benefits of electrifying the Mersey Railway 58
5.5 The prospects for electric traction in Britain after the electrification of the Mersey Railway 61
5.6 Electrification of the London Underground 64
5.7 The influence of American electrical engineering 65
Contents

6 Electrification 1900–20

6.1 The Great Eastern Railway and the Liverpool Street Station experiment 73
6.2 Electric rapid-transit railways and general railway electrification 77
6.3 Locomotive working 81
6.4 LVDC lines and main line traffic 85
6.5 The electric railway and internal-combustion engined traction 92

7 Track circuits, describers and electrical signalling 1890–1920

7.1 Introduction 95
7.2 Pioneer systems 96
7.3 Automatic signalling and related innovations 98
7.4 Main line signalling developments 106
7.5 Wireless telegraphy in train operations 109
7.6 Telephony and railway communications 112

8 Evolution of the electric railway 1920–40

8.1 Introduction 115
8.2 The three-phase railway electrification system 115
8.3 Development of the single-phase traction system 121
8.4 The emergence of the single-phase archetype 126
8.5 Converter locomotives 130
8.6 Motor-converter locomotives 132
8.7 Phase-splitting locomotives 133
8.8 The Kando system 137
8.9 The high-voltage DC railway 139
8.10 The LVDC railway and the interurban network 144
8.11 The Presidents' Conference Car 146

9 Railway electrification and the thermal-electric locomotive

9.1 The thermal-electric locomotive and general railway electrification 149
9.2 The 'Electro-Turbo-Loco' of 1909 151
9.3 The Ramsay-Armstrong Whitworth locomotive of 1922 155
9.4 Internal-combustion locomotives and the transmission question 157

10 Converters, the mercury-arc rectifier and supply to electric railways

10.1 Introduction 169
10.2 Rectification of power supply 169
10.3 Development of the industrial mercury-arc rectifier 174
10.4 The mercury-arc rectifier in railway traction 177
10.5 British railway rectifiers 180
11 Signalling, communications and control 1920–40
11.1 Introduction 185
11.2 Signalling and interlocking 188
11.3 Speed signalling 193
11.4 Powered operation and interlocking 195
11.5 American practice 1920–40 202
11.6 British railway communications and control 1920–40 203
11.7 Train describer-recorders 204

12 Railway electrification 1920–40
12.1 Introduction 207
12.2 Electric traction and the efficient use of fuel 207
12.3 The stagnation in British railway engineering 213
12.4 Lomonossoff and state ownership of railways 217
12.5 Railway electrification in Britain 1920–40 219

13 Electro-Motive, General Motors and oil-electric traction
13.1 Introduction 225
13.2 Development of the Electro-Motive (General Motors) diesel locomotive 230
13.3 General Electric and the ‘Steamotive’ project 236
13.4 Conclusion 240

14 The mercury-arc rectifier locomotive
14.1 Introduction 245
14.2 Westinghouse, General Electric and the Pennsylvania Railroad rectifier locomotives 249
14.3 The advent of the solid-state rectifier 255
14.4 The mercury rectifier in France and Britain 255
14.5 The static rectifier and post-war modernisation 256
14.6 The first British mercury-arc rectifier locomotive 258

15 Railway electrification in Britain 1920–60
15.1 Introduction 261
15.2 The Weir Report 263
15.3 The acceptance of the HVAC standard in Britain 268
15.4 The impact of the new standard 275
15.5 Traction policy 1945–60 277

16 Signalling, communications and control 1940–70
16.1 Introduction 283
16.2 Centralising signal boxes 1945–70 285
16.3 Automatic train describers and Program Machines 289
16.4 The automatic railway 293
16.5 Automatic warning, control and driving systems on main line railways
16.6 General trends 1940–70

17 Main line direct current traction in Britain
17.1 The electrical industry and the railways after 1945
17.2 LVDC electric locomotive development after 1945
17.3 The high-voltage direct current system

18 Main line alternating current traction in Britain
18.1 Advantages and disadvantages of the standard systems
18.2 Gaining AC expertise
18.3 The first production classes: AL1–AL5
18.4 The Class 87 and its significance

19 Solid-state electronics, motor control and the locomotive
19.1 The advent of solid-state control systems for locomotives
19.2 The Brown-Boveri system
19.3 The Deutsches Bundesbahn Class 120
19.4 Solid-state electronics and locomotive drive systems
19.5 The modular system

20 Solid-state electronics in signalling, communications and control
20.1 Centralised traffic control and interlocking 1965–85
20.2 The computer in signalling and control before 1985
20.3 Reversible working
20.4 The locomotive-mounted computer
20.5 Radio communications, signalling and control
20.6 Large-scale integration of systems
20.7 The moving block system
20.8 Automatic control of main line trains

21 The electric railway 1965–95
21.1 The need for increased performance 1965–95
21.2 The origins of very high speed train operations
21.3 The development of the SNCF train à grande vitesse
21.4 The British Rail Advanced Passenger Train project
21.5 Developments subsequent to the TGV
21.6 Current developments in main line electric traction

Bibliography
Index