Contents

Introduction to the sixth edition xi
Contributors xv
Notation xxv

SECTION 1: DESIGN SYNTHESIS

1 Single-storey buildings 1
 Range of building types: Anatomy of structure: Loading: Design of common structural forms

2 Multi-storey buildings 42
 Introduction: Factors influencing choice of form: Anatomy of structure: Worked example

3 Industrial steelwork 94
 Range of structures and scale of construction: Anatomy of structure: Loading: Structure in its wider context

4 Bridges 124
 Introduction: Selection of span: Selection of type: Codes of practice: Traffic loading: Other actions: Steel grades: Overall stability and articulation: Initial design: Worked example

5 Other structural applications of steel 169
 Towers and masts: Space frames: Cable structures: Steel in residential construction: Atria

SECTION 2: STEEL TECHNOLOGY

6 Applied metallurgy of steel 222

7 Fracture and fatigue 248
 Fracture: Linear elastic fracture mechanics: Elastic-plastic fracture mechanics: Materials testing for fracture properties: Fracture-safe design: Fatigue

8 Sustainability and steel construction 275
Contents

SECTION 3: DESIGN THEORY

9 Introduction to manual and computer analysis
 Introduction: Element analysis; Line elements; Plates; Analysis of skeletal structures; Finite element method 286

10 Beam analysis
 Simply-supported beams; Propped cantilevers; Fixed, built-in or encastré beams; Continuous beams; Plastic failure of single members; Plastic failure of propped cantilevers 325

11 Plane frame analysis
 Formulae for rigid frames; Portal frame analysis 342

12 Applicable dynamics
 Introduction; Fundamentals of dynamic behaviour; Distributed parameter systems; Damping; Finite element analysis; Dynamic testing 354

SECTION 4: ELEMENT DESIGN

13 Local buckling and cross-section classification
 Introduction; Cross-sectional dimensions and moment–rotation behaviour; Effect of moment–rotation behaviour on approach to design and analysis; Classification table; Economic factors 373

14 Tension members
 Introduction; Types of tension member; Design for axial tension; Combined bending and tension; Eccentricity of end connections; Other considerations; Cables; Worked examples 383

15 Columns and struts
 Introduction; Common types of member; Design considerations; Cross-sectional considerations; Compressive resistance; Torsional and flexural-torsional buckling; Effective lengths; Special types of strut; Economic points; Worked examples 402

16 Beams
 Common types of beam; Cross-section classification and moment capacity, \(M_c \); Basic design; Lateral bracing; Bracing action in bridges – U-frame design; Design for restricted depth; Cold-formed sections as beams; Beams with web openings; Worked examples 431

17 Plate girders
 Introduction; Advantages and disadvantages; Initial choice of cross-section for plate girders in buildings; Design of plate girders used in buildings to BS 5950: Part 1: 2000; Initial choice of cross-section for plate girders used in bridges; Design of steel bridges to BS 5400: Part 3; Worked examples 470
18 **Members with compression and moments**

- Occurrence of combined loading: Types of response – interaction:
- Effect of moment gradient loading: Selection of type of cross-section:
- Basic design procedure: Cross-section classification under compression and bending: Special design methods for members in portal frames:
- Worked examples

19 **Trusses**

- Common types of trusses: Guidance on overall concept: Effects of load reversal: Selection of elements and connections: Guidance on methods of analysis: Detailed design considerations for elements:
- Factors dictating the economy of trusses: Other applications of trusses:
- Rigid-jointed Vierendeel girders: Worked examples

20 **Composite deck slabs**

- Introduction: Deck types: Normal and lightweight concretes: Selection of floor system: Basic design: Fire resistance: Diaphragm action: Other constructional features: Worked example

21 **Composite beams**

- Application of composite beams: Economy: Guidance on span-to-depth ratios: Types of shear connection: Span conditions: Analysis of composite section: Basic design: Worked examples

22 **Composite columns**

- Introduction: Design of encased composite columns: Design of concrete-filled tubes: Worked example

SECTION 5: CONNECTION DESIGN

23 **Bolts**

- Types of bolt: Methods of tightening and their application: Geometric considerations: Methods of analysis of bolt groups: Design strengths:
- Tables of strengths

24 **Welds and design for welding**

- Advantages of welding: Ensuring weld quality and properties by the use of standards: Recommendations for cost reduction: Welding processes: Geometric considerations: Methods of analysis of weld groups: Design strengths

25 **Plate and stiffener elements in connections**

- Dispersion of load through plates and flanges: Stiffeners: Prying forces: Plates loaded in-plane

26 **Design of connections**

- Introduction: Simple connections: Moment connections: Summary:
- Worked examples
Contents

27 Foundations and holding-down systems
Foundations; Connection of the steelwork; Analysis; Holding-down systems; Worked examples 816

SECTION 6: OTHER ELEMENTS

28 Bearings and joints
Introduction; Bearings; Joints; Bearings and joints – other considerations 842

29 Steel piles
Bearing piles; Sheet piles; Pile driving and installation; Durability 867

30 Floors and orthotropic decks
Steel plate floors; Open-grid flooring; Orthotropic decks 906

SECTION 7: CONSTRUCTION

31 Tolerances
Introduction; Standards; Implications of tolerances; Fabrication tolerances; Erection tolerances 917

32 Fabrication
Introduction; Economy of fabrication; Welding; Bolting; Cutting; Handling and routeing of steel; Quality management 948

33 Erection
Introduction; The method statement; Planning; Site practices; Site fabrication and modifications; Steel decking and shear connectors; Quality control; Cranes and craneage; Safety; Special structures 971

34 Fire protection and fire engineering
Introduction; Standards and building regulations; Structural performance in fire; Developments in fire-safe design; Methods of protection; Fire testing; Fire engineering 1013

35 Corrosion and corrosion prevention
The corrosion process; Effect of the environment; Design and corrosion; Surface preparation; Metallic coatings; Paint coatings; Application of paints; Weather-resistant steels; The protective treatment specification 1030

36 The Eurocodes
The Eurocodes – background and timescales; Conformity with EN 1990 – basis of design; EC3 Design of steel structures; EC4 Design of composite steel and concrete structures; Implications of the Eurocodes for practice in the UK; Conclusions 1053
Appendix

Steel technology

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic properties of steel</td>
<td>1071</td>
</tr>
<tr>
<td>European standards for structural steels</td>
<td>1072</td>
</tr>
</tbody>
</table>

Design theory

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending moment, shear and deflection tables for</td>
<td></td>
</tr>
<tr>
<td>cantilevers</td>
<td>1077</td>
</tr>
<tr>
<td>simply-supported beams</td>
<td>1079</td>
</tr>
<tr>
<td>built-in beams</td>
<td>1087</td>
</tr>
<tr>
<td>propped cantilevers</td>
<td>1094</td>
</tr>
<tr>
<td>Bending moment and reaction tables for continuous beams</td>
<td></td>
</tr>
<tr>
<td>Influence lines for continuous beams</td>
<td>1102</td>
</tr>
<tr>
<td>Second moments of area of</td>
<td></td>
</tr>
<tr>
<td>two flanges</td>
<td>1116</td>
</tr>
<tr>
<td>rectangular plates</td>
<td>1118</td>
</tr>
<tr>
<td>a pair of unit areas</td>
<td>1122</td>
</tr>
<tr>
<td>Geometrical properties of plane sections</td>
<td>1124</td>
</tr>
<tr>
<td>Plastic modulus of</td>
<td></td>
</tr>
<tr>
<td>two flanges</td>
<td>1127</td>
</tr>
<tr>
<td>rectangles</td>
<td>1128</td>
</tr>
<tr>
<td>Formulae for rigid frames</td>
<td>1130</td>
</tr>
</tbody>
</table>

Element design

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanatory notes on section dimensions and properties, bolts and welds</td>
<td></td>
</tr>
<tr>
<td>1 General</td>
<td>1148</td>
</tr>
<tr>
<td>2 Dimensions of sections</td>
<td>1149</td>
</tr>
<tr>
<td>3 Section properties</td>
<td>1151</td>
</tr>
<tr>
<td>4 Bolts and welds</td>
<td>1160</td>
</tr>
<tr>
<td>Tables of dimensions and gross section properties</td>
<td></td>
</tr>
<tr>
<td>Universal beams</td>
<td>1166</td>
</tr>
<tr>
<td>Universal columns</td>
<td>1172</td>
</tr>
<tr>
<td>Joists</td>
<td>1175</td>
</tr>
<tr>
<td>Universal bearing piles</td>
<td>1178</td>
</tr>
<tr>
<td>Hot-finished:</td>
<td></td>
</tr>
<tr>
<td>circular hollow sections</td>
<td>1181</td>
</tr>
<tr>
<td>square hollow sections</td>
<td>1183</td>
</tr>
<tr>
<td>rectangular hollow sections</td>
<td>1185</td>
</tr>
<tr>
<td>Cold-formed:</td>
<td></td>
</tr>
<tr>
<td>circular hollow sections</td>
<td>1187</td>
</tr>
<tr>
<td>square hollow sections</td>
<td>1190</td>
</tr>
<tr>
<td>rectangular hollow sections</td>
<td>1192</td>
</tr>
<tr>
<td>Asymmetric beams</td>
<td>1195</td>
</tr>
<tr>
<td>Parallel flange channels</td>
<td>1197</td>
</tr>
</tbody>
</table>
Two parallel flange channels:
- laced 1201
- back to back 1202
Equal angles 1203
Unequal angles 1204
Equal angles: back to back 1206
Unequal angles: long legs back to back 1207
Castellated universal beams 1208
Structural tees cut from universal beams 1214
Structural tees cut from universal columns 1218

Extracts from BS 5950: Part 1: 2000
- Deflection limits (Section two: Table 8) 1220
- Design strengths for steel (Section three: Table 9) 1221
- Limiting width-to-thickness ratios for sections other than CHS and RHS (Section three: Table 11) 1222
- Limiting width-to-thickness ratios for CHS and RHS (Section three: Table 12) 1223
- Bending strengths (Section four: Tables 16 and 17) 1224
- Strut table selection (Section four: Table 23) 1227
- Compressive strength (Section four: Table 24) 1228

Connection design

Bolt data
- Hole sizes 1236
- Bolt strengths 1236
- Spacing, end and edge distances 1237
- Maximum centres of fasteners 1237
- Maximum edge distances 1238
- Back marks in channel flanges 1240
- Back marks in angles 1240
- Cross centres through flanges 1241

Bolt capacities
- Non-preloaded ordinary bolts in S275 1242
- Non-preloaded countersunk bolts in S275 1244
- Non-preloaded HSFG bolts in S275 1246
- Preloaded HSFG bolts in S275: non-slip in service 1247
- Preloaded HSFG bolts in S275: non-slip under factored loads 1248
- Preloaded countersunk HSFG bolts in S275: non-slip in service 1249
- Preloaded countersunk HSFG bolts in S275: non-slip under factored loads 1250
- Non-preloaded ordinary bolts in S355 1251
- Non-preloaded countersunk bolts in S355 1253
- Non-preloaded HSFG bolts in S355 1255
- Preloaded HSFG bolts in S355: non-slip in service 1256
- Preloaded HSFG bolts in S355: non-slip under factored loads 1257
Preloaded countersunk HSFG bolts in S355: non-slip in service

Preloaded countersunk HSFG bolts in S355: non-slip under factored loads

Bolt and weld groups
Bolt group moduli – fasteners in the plane of the force
Bolt group moduli – fasteners not in the plane of the force
Weld group moduli – welds in the plane of the force
Weld group moduli – welds not in the plane of the force

Other elements
Sheet pile sections
Larssen sections
Frodingham sections
Box sheet piles
High modulus piles
H-piles
Floor plate design tables

Construction
Fire information sheets
Section factors for
universal beams
universal columns
circular hollow sections
rectangular hollow sections
rectangular hollow sections (square)
Minimum thickness of spray protection
Basic data on corrosion

Codes and standards
British and European standards covering the design and construction of steelwork

Index