Modelling Photovoltaic Systems using PSpice®

Luis Castañer and Santiago Silvestre
Universidad Politecnica de Cataluña, Barcelona, Spain
Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xiii</td>
</tr>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xvii</td>
</tr>
<tr>
<td>1 Introduction to Photovoltaic Systems and PSpice</td>
<td>1</td>
</tr>
<tr>
<td>1.1 The photovoltaic system</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Important definitions: irradiance and solar radiation</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Learning some of PSpice basics</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Using PSpice subcircuits to simplify portability</td>
<td>7</td>
</tr>
<tr>
<td>1.5 PSpice piecewise linear (PWL) sources and controlled voltage sources</td>
<td>9</td>
</tr>
<tr>
<td>1.6 Standard AM1.5G spectrum of the sun</td>
<td>10</td>
</tr>
<tr>
<td>1.7 Standard AM0 spectrum and comparison to black body radiation</td>
<td>12</td>
</tr>
<tr>
<td>1.8 Energy input to the PV system: solar radiation availability</td>
<td>15</td>
</tr>
<tr>
<td>1.9 Problems</td>
<td>17</td>
</tr>
<tr>
<td>1.10 References</td>
<td>18</td>
</tr>
<tr>
<td>2 Spectral Response and Short-Circuit Current</td>
<td>19</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>19</td>
</tr>
<tr>
<td>2.1.1 Absorption coefficient $\alpha(\lambda)$</td>
<td>20</td>
</tr>
<tr>
<td>2.1.2 Reflectance $R(\lambda)$</td>
<td>21</td>
</tr>
<tr>
<td>2.2 Analytical solar cell model</td>
<td>22</td>
</tr>
<tr>
<td>2.2.1 Short-circuit spectral current density</td>
<td>23</td>
</tr>
<tr>
<td>2.2.2 Spectral photon flux</td>
<td>24</td>
</tr>
<tr>
<td>2.2.3 Total short-circuit spectral current density and units</td>
<td>24</td>
</tr>
<tr>
<td>2.3 PSpice model for the short-circuit spectral current density</td>
<td>25</td>
</tr>
<tr>
<td>2.3.1 Absorption coefficient subcircuit</td>
<td>25</td>
</tr>
<tr>
<td>2.3.2 Short-circuit current subcircuit model</td>
<td>26</td>
</tr>
<tr>
<td>2.4 Short-circuit current</td>
<td>29</td>
</tr>
</tbody>
</table>
CONTENTS

2.5 Quantum efficiency (QE) 30
2.6 Spectral response (SR) 32
2.7 Dark current density 33
2.8 Effects of solar cell material 34
2.9 Superposition 35
2.10 DC sweep plots and I(V) solar cell characteristics 35
2.11 Failing to fit to the ideal circuit model: series and shunt resistances and recombination terms 38
2.12 Problems 39
2.13 References 39

3 Electrical Characteristics of the Solar Cell

Summary

3.1 Ideal equivalent circuit 41
3.2 PSpice model of the ideal solar cell 42
3.3 Open circuit voltage 45
3.4 Maximum power point 47
3.5 Fill factor (FF) and power conversion efficiency (η) 49
3.6 Generalized model of a solar cell 51
3.7 Generalized PSpice model of a solar cell 53
3.8 Effects of the series resistance on the short-circuit current and the open-circuit voltage 54
3.9 Effect of the series resistance on the fill factor 55
3.10 Effects of the shunt resistance 58
3.11 Effects of the recombination diode 59
3.12 Temperature effects 60
3.13 Effects of space radiation 64
3.14 Behavioural solar cell model 68
3.15 Use of the behavioural model and PWL sources to simulate the response to a time series of irradiance and temperature 72
3.15.1 Time units 72
3.15.2 Variable units 72
3.16 Problems 75
3.17 References 75

4 Solar Cell Arrays, PV Modules and PV Generators

Summary

4.1 Introduction 77
4.2 Series connection of solar cells 78
4.2.1 Association of identical solar cells 78
4.2.2 Association of identical solar cells with different irradiance levels: hot spot problem 79
4.2.3 Bypass diode in series strings of solar cells 81
4.3 Shunt connection of solar cells 82
4.3.1 Shadow effects 83
4.4 The terrestrial PV module 84
4.5 Conversion of the PV module standard characteristics to arbitrary irradiance and temperature values 89
4.5.1 Transformation based in normalized variables (ISPRA method) 89
4.6 Behavioural PSpice model for a PV module 91
CONTENTS

4.7 Hot spot problem in a PV module and safe operation area (SOA) 95
4.8 Photovoltaic arrays 96
4.9 Scaling up photovoltaic generators and PV plants 98
4.10 Problems 100
4.11 References 101

5 Interfacing PV Modules to Loads and Battery Modelling 103

5.1 DC loads directly connected to PV modules 103
5.2 Photovoltaic pump systems 104
 5.2.1 DC series motor PSpice circuit 105
 5.2.2 Centrifugal pump PSpice model 106
 5.2.3 Parameter extraction 106
 5.2.4 PSpice simulation of a PV array-series DC motor-centrifugal pump system 112
5.3 PV modules connected to a battery and load 113
 5.3.1 Lead-acid battery characteristics 114
 5.3.2 Lead-Acid battery PSpice model 117
 5.3.3 Adjusting the PSpice model to commercial batteries 123
 5.3.4 Battery model behaviour under realistic PV system conditions 125
 5.3.5 Simplified PSpice battery model 131
5.4 Problems 132
5.5 References 132

6 Power Conditioning and Inverter Modelling 133

6.1 Introduction 133
6.2 Blocking diodes 133
6.3 Charge regulation 135
 6.3.1 Parallel regulation 135
 6.3.2 Series regulation 139
6.4 Maximum power point trackers (MPPTs) 143
 6.4.1 MPPT based on a DC-DC buck converter 144
 6.4.2 MPPT based on a DC-DC boost converter 145
 6.4.3 Behavioural MPPT PSpice model 147
6.5 Inverters 154
 6.5.1 Inverter topological PSpice model 157
 6.5.2 Behavioural PSpice inverter model for direct PV generator–inverter connection 164
 6.5.3 Behavioural PSpice inverter model for battery–inverter connection 169
6.6 Problems 175
6.7 References 177

7 Standalone PV Systems 179

7.1 Standalone photovoltaic systems 179
7.2 The concept of the equivalent peak solar hours (PSH) 180
7.3 Energy balance in a PV system: simplified PV array sizing procedure 184
7.4 Daily energy balance in a PV system 187
 7.4.1 Instantaneous power mismatch 188
CONTENTS

7.4.2 Night-time load 190
7.4.3 Day-time load 191
7.5 Seasonal energy balance in a PV system 192
7.6 Simplified sizing procedure for the battery in a Standalone PV system 194
7.7 Stochastic radiation time series 196
7.8 Loss of load probability (LLP) 198
7.9 Comparison of PSpice simulation and monitoring results 205
7.10 Long-term PSpice simulation of standalone PV systems: a case study 207
7.11 Long-term PSpice simulation of a water pumping PV system 212
7.12 Problems 214
7.13 References 214

8 Grid-connected PV Systems 215

Summary 215
8.1 Introduction 215
8.2 General system description 216
8.3 Technical considerations 217
8.3.1 Islanding protection 218
8.3.2 Voltage disturbances 218
8.3.3 Frequency disturbances 218
8.3.4 Disconnection 219
8.3.5 Reconnection after grid failure 219
8.3.6 DC injection into the grid 219
8.3.7 Grounding 219
8.3.8 EMI 219
8.3.9 Power factor 220
8.4 PSpice modelling of inverters for grid-connected PV systems 220
8.5 AC modules PSpice model 225
8.6 Sizing and energy balance of grid-connected PV systems 229
8.7 Problems 242
8.8 References 242

9 Small Photovoltaics 245

Summary 245
9.1 Introduction 245
9.2 Small photovoltaic system constraints 245
9.3 Radiometric and photometric quantities 246
9.4 Luminous flux and illuminance 247
9.4.1 Distance square law 247
9.4.2 Relationship between luminance flux and illuminance 247
9.5 Solar cell short circuit current density produced by an artificial light 248
9.5.1 Effect of the illuminance 251
9.5.2 Effect of the quantum efficiency 251
9.6 I(V) Characteristics under artificial light 253
9.7 Illuminance equivalent of AM1.5G spectrum 253
9.8 Random Monte Carlo analysis 255
9.9 Case study: solar pocket calculator 258
9.10 Lighting using LEDs 260
9.11 Case study: Light alarm
 9.11.1 PSpice generated random time series of radiation 265
 9.11.2 Long-term simulation of a flash light system 267
9.12 Case study: a street lighting system 270
9.13 Problems 271
9.14 References 272

Annex 1 PSpice Files Used in Chapter 1 273
Annex 2 PSpice Files Used in Chapter 2 283
Annex 3 PSpice Files Used in Chapter 3 287
Annex 4 PSpice Files Used in Chapter 4 293
Annex 5 PSpice Files Used in Chapter 5 303
Annex 6 PSpice Files Used in Chapter 6 305
Annex 7 PSpice Files Used in Chapter 7 309
Annex 8 PSpice Files Used in Chapter 8 319
Annex 9 PSpice Files Used in Chapter 9 321
Annex 10 Summary of Solar Cell Basic Theory 333
Annex 11 Estimation of the Radiation in an Arbitrarily Oriented Surface 339
Index 353