Transdermal and Topical Drug Delivery
From theory to clinical practice

Adrian Williams
BSc, PhD, CChem, MRSC
Professor of Biophysical Pharmaceutics
School of Pharmacy
University of Bradford
UK
Contents

Preface xi
Acknowledgements xiii
About the author xiv

1 Structure and function of human skin
1.1 Introduction
1.2 Healthy skin structure and function
 1.2.1 The subcutaneous fat layer
 1.2.2 The dermis
 1.2.3 The epidermis
 1.2.4 Epidermal enzyme systems
1.3 Physiological factors affecting transdermal and topical drug delivery
 1.3.1 Skin age
 1.3.2 Body site
 1.3.3 Race
 1.3.4 Other factors
1.4 Pathological disorders
 1.4.1 Eruptions
 1.4.2 Infections
 1.4.3 Ichthyoses
 1.4.5 Tumours
1.5 References

2 Theoretical aspects of transdermal drug delivery
2.1 Terminology
2.2 The transdermal permeation process
2.3 Permeation pathways through the stratum corneum
 2.3.1 Transappendageal transport
 2.3.2 Transcellular route
 2.3.3 Intercellular pathway
2.4 Influence of permeant physico-chemical properties on route of absorption
 2.4.1 Partition coefficient
 2.4.2 Molecular size
2.4.3 Solubility/melting point 37
2.4.4 Ionisation 38
2.4.5 Other factors 39

2.5 Mathematics of skin permeation 40
2.5.1 Pseudo-steady-state permeation (infinite dosing) 41
2.5.2 Transient permeation (finite dosing) 46

3 Experimental design
3.1 Introduction 51
3.2 In-vivo or in-vitro studies? 51
 3.2.1 In-vitro tissue; potential problems 53
3.3 Alternative membranes for in-vitro studies 54
 3.3.1 Animal membranes 54
 3.3.2 Artificial membranes 56
3.4 Selection of membrane layers for in-vitro studies 59
 3.4.1 Preparation of skin membranes 60
3.5 Selection of diffusion cell for in-vitro experiments 62
3.6 Formulation application considerations 64
 3.6.1 Finite or infinite dose? 64
 3.6.2 Vehicle effects 65
 3.6.3 Ionisation 68
 3.6.4 Permeant detection 70
 3.6.5 Donor solution concentration 73
3.7 Receptor solution for in-vitro studies 73
3.8 Integrity checks 75
3.9 Temperature 76
3.10 Experimental duration 76
3.11 In-vitro experimental replicates 77
3.12 Mass balance 77
3.13 Expression of results 77
3.14 Current regulatory guidelines 79
3.15 References 79

4 Chemical modulation of topical and transdermal permeation
4.1 Introduction 83
4.2 Water 84
4.3 Chemical penetration enhancers 86
 4.3.1 Sulfoxides and similar chemicals 87
 4.3.2 Azone 89
 4.3.3 Pyrrolidones 91
6 Topical and transdermal formulations
 6.1 Introduction 169
 6.2 Formulation options 169
 6.2.1 Liquid formulations 171
 6.2.2 Semi-solid formulations 172
 6.2.3 Solid formulations 178
 6.3 Transdermal patches 178
 6.3.1 Types of transdermal patches 180
 6.3.2 Transdermal patch components 183
 6.4 Some general formulation ‘rules’ 187
 6.4.1 Select a good drug candidate 187
 6.4.2 Estimate drug flux 188
 6.4.3 Use thermodynamics 190
 6.4.4 Be realistic 191
 6.4.5 Alcohol helps 192
 6.4.6 How to keep the drug localised? 193
 6.5 References 194

7 Clinical principles
 7.1 Introduction 195
 7.2 What quantities are necessary? 195
 7.3 Which formulation type to select? 196
 7.4 Formulation is more important than concentration 197
 7.5 What can be delivered to and through the skin? 198
 7.6 Occlusion or not? 203
 7.7 Dilution of preparations 203
 7.8 Ensuring formulation equivalence 204
 7.9 Drug delivery through a repairing barrier 213
 7.10 Case studies 215
 7.10.1 Case 1: Permethrin treatment of scabies 215
 7.10.2 Case 2: PUVA therapy 216
 7.10.3 Case 3: Salicylic acid 217
 7.10.4 Case 4: Errors with patches 219
 7.11 References 220

Glossary 223
Index 229