Contents

List of contributors xiv
Preface xvii

1 Drug design and discovery: an overview 1
LESTER A. MITSCHER
1.1 Introduction 1
1.2 Historical perspective 2
1.3 What kinds of compounds become drugs? 7
1.4 Preparation and organization for drug seeking 8
1.5 Sources of hits, leads and candidate drugs 11
1.5.1 Natural products 11
1.6 Lead optimization 26
1.7 Cell biology and genomics as a source of drug targets 31
1.8 Future developments 32
Further reading 33
References 34

2 Role of molecular recognition in drug design 35
PETER ANDREWS AND MICHAEL DOOLEY
2.1 Introduction 35
2.2 Thermodynamic considerations of drug binding 35
2.3 The physical basis of intermolecular interactions 37
2.3.1 Enthalpic contributions 37
2.3.2 Entropic contributions 41
2.4 The total energy of intermolecular interaction 42
2.4.1 Free energy perturbation 42
2.4.2 Partitioning methods 42
2.5 Estimating individual group components in ligand–receptor interactions and co-operativity 43
2.5.1 Intrinsic binding energies 43
2.5.2 Active site mutagenesis 46
2.5.3 ‘Average’ functional group contributions 46
2.5.4 The role of ΔG_{t+τ} 47
2.6 Some rules of thumb 49
2.6.1 What should this functional group do for my ligand? 49
2.6.2 How well does my ligand fit the receptor? 50
2.6.3 Conclusion 51
References and further reading 52

3 Stereochemistry in drug design
IAN J. KENNEDY AND DAVID E. JANE

3.1 Introduction 54
3.2 What are stereoisomers? 55
3.3 The origin of stereospecificity in molecular recognition 59
3.4 Why is stereochemistry important in drug design? 61
 3.4.1 The distomer is inactive (high eudismic ratio) 63
 3.4.2 Both enantiomers have independent therapeutic benefits 64
 3.4.3 Distomer possesses harmful effects 65
 3.4.4 The eutomer and the distomer have the opposite biological activity 65
 3.4.5 The racemate has a therapeutic advantage over the individual enantiomers 66
 3.4.6 One enantiomer converted into the other in the body 67
3.5 Methods of obtaining pure stereoisomers 67
 3.5.1 Resolution of racemates by crystallization of diastereomers 68
 3.5.2 Enantioselective chromatography 70
 3.5.3 Asymmetric synthesis 74
3.6 Analytical methods of determining purity of stereoisomers 81
 3.6.1 Optical rotation 81
 3.6.2 NMR spectroscopy 82
 3.6.3 Gas chromatography 83
 3.6.4 Capillary electrophoresis (CE) 83
 3.6.5 Mass spectrometry 84
Further reading 85

4 Computer-aided development and use of three-dimensional pharmacophore models
TOMMY LILJEFORS AND INGRID PETTERSSON

4.1 Structure- and pharmacophore-based ligand design 86
4.2 The pharmacophore concept 87
4.3 Basic principles and a step-by-step procedure 88
4.4 Pharmacophore elements and their representations 89
 4.4.1 Representation of pharmacophore elements as ligand points and site points 90
 4.4.2 Comparison of site-points with experimentally observed ligand–protein interactions 92
 4.4.3 Representation of pharmacophore elements by explicit molecular properties 93
4.5 The receptor-bound or 'active' conformation 95
 4.5.1 Thermodynamic considerations 95
 4.5.2 The conformational energy of the bioactive conformation 97
 4.5.3 Conformational analysis 99
4.6 Molecular superimposition 102
 4.6.1 Least-squares superimposition, flexible fitting and template forcing 102
 4.6.2 The use of molecular superimposition techniques 103
4.7 Receptor-excluded and receptor-essential volumes 103
4.8 Solvation effects 104
4.9 Examples of 3D-pharmacophore models and their use 106
 4.9.1 Apomorphine congeners: conformational energies vs. agonist activities 106
 4.9.2 A 3D-pharmacophore model for dopamine D₂ receptor antagonists 108
 4.9.3 3D-pharmacophore models for the design of selective 5-HT₂₄ vs. D₂ receptor antagonists 110
 4.9.4 A pharmacophore based database searching for new antimalarial drugs 113
References 115
Further reading 115

5 Quantitative structure–activity relationships and experimental design
 Ulf Norinder and Thomas Högberg

5.1 Introduction 117
5.2 Hansch analysis 117
 5.2.1 Hydrophobic correlations 117
 5.2.2 Multifactorial correlations 118
5.3 Physico-chemical properties 120
 5.3.1 Electronic descriptors 120
 5.3.2 Hydrophobic parameters 120
 5.3.3 Steric descriptors 122
 5.3.4 Biological relevance 125
5.4 Applications of Hansch equations 125
 5.4.1 Hydrophobic and steric factors 125
 5.4.2 Influence of electronic and other factors 126
 5.4.3 Ionization constants 128
 5.4.4 Predictions from equations 128
 5.4.5 Blood–brain barrier penetration 130
 5.4.6 Relations to molecular modeling 130
5.5 Pattern recognition 131
 5.5.1 PCR and PLS methods 131
 5.5.2 Application of PLS 134
5.6 3D-QSAR methodologies 135
 5.6.1 Methods and strategy 135
7.4.3 Structure-activity relationships and state-dependent interactions 191
7.5 Drugs acting at specific ion channels 193
 7.5.1 Multiple sites for drug action 193
 7.5.2 Drugs acting at Na\(^+\) channels 193
 7.5.3 Drugs acting at Ca\(^{2+}\) channels 196
 7.5.4 Drugs acting at K\(^+\) channels 200
7.6 Ion channels and diseases 201
7.7 Ion channels as lethal species 203
7.8 Future developments 203

Further reading 203

8 Radiotracers: synthesis and use in imaging 205
CHRISTER HALLDIN AND THOMAS HÖGBERG

8.1 Introduction 205
8.2 Nuclear chemistry 206
8.3 Long-lived radionuclides 207
 8.3.1 \(^{14}\)C-labeled compounds 208
 8.3.2 \(^{3}\)H-labeled compounds 209
 8.3.3 \(^{125}\)I-labeled compounds 211
8.4 Short-lived radionuclides 213
 8.4.1 \(^{123}\)I- and \(^{99m}\)Tc-labeled compounds 213
 8.4.2 \(^{76}\)Br-labeled compounds 215
 8.4.3 \(^{18}\)F-labeled compounds 215
8.5 Ultrashort-lived radionuclides 217
 8.5.1 \(^{11}\)C-labeled compounds 217
 8.5.2 \(^{13}\)N-labeled compounds 222
 8.5.3 \(^{15}\)O-labeled compounds 222
8.6 Imaging techniques 223
 8.6.1 Autoradiography 223
 8.6.2 SPECT 223
 8.6.3 PET 224

Further reading 230

9 Excitatory and inhibitory amino acid receptor ligands 232
ULF MADSEN AND BENTE FRØLUND

9.1 Therapeutic prospects for excitatory and inhibitory amino acids 232
 9.1.1 Neurodegenerative diseases 232
 9.1.2 CNS ischemia 233
 9.1.3 Alzheimer's disease 233
 9.1.4 Other neurologic disorders 234
9.2 GABA: inhibitory neurotransmitter 235
 9.2.1 Therapeutic targets 235
 9.2.2 The GABA molecule 236
9.2.3 GABA biosynthesis and metabolism 238
9.2.4 GABA uptake 241
9.2.5 GABA receptors 244

9.3 Glutamic acid: excitatory neurotransmitter and excitotoxin 253
9.3.1 Classification of and ligands for Glu receptors 254
9.3.2 Ibotenic acid: a naturally occurring excitotoxin and lead structure 263

9.4 Future developments 270
Further reading 271

10 Acetylcholine and histamine receptors and receptor ligands: medicinal chemistry and therapeutic aspects 272
POVL KROGSGAARD-LARSEN AND KARLA FRYDENVANG

10.1 Alzheimer’s disease 272
10.2 Cholinergic synaptic mechanisms as therapeutic targets 274
10.2.1 Muscarinic and nicotinic acetylcholine receptors and receptor ligands 276
10.2.2 Muscarinic antagonists as pharmacological tools and therapeutic agents 279
10.2.3 Muscarinic agonists and partial agonists: bioisosteric design 282
10.2.4 Muscarinic agonists and partial agonists: synthetic and structural aspects 285
10.2.5 Nicotinic agonists and partial agonists: bioisosteric design 288
10.2.6 Nicotinic agonists: synthetic aspects 289
10.2.7 Acetylcholinesterase inhibitors 290

10.3 Histamine receptors 292
10.3.1 Protolytic properties of histamine and histamine analogs 294
10.3.2 H2 and H3 receptor antagonists: design and therapeutic aspects 294

Further reading 297

11 Dopamine and serotonin receptor and transporter ligands 299
KLAUS P. BØGESØ AND BENNY BANG-ANDERSEN

11.1 Receptors and transporters for dopamine and serotonin 299
11.2 Dopamine and serotonin receptor ligands 300
11.2.1 Molecular biology and structure of receptors for dopamine and serotonin 300
11.2.2 Antipsychotic drugs 302
11.3 Dopamine and serotonin transporter ligands 312
11.3.1 Molecular biology and structure of transporters for biogenic amines 312
11.3.2 Antidepressant drugs 314
11.3.3 Dopamine uptake inhibitors 323

Further reading 326

12 Enzymes and enzyme inhibitors 328
ROBERT A. COPELAND AND PAUL S. ANDERSON

12.1 Introduction 328
12.2 Chemical mechanisms of enzyme catalysis 329
 12.2.1 Transition-state theory in enzyme catalysis 330
 12.2.2 Active site structure stabilizes the transition state 335
 12.2.3 Strategies for transition-state stabilization 336
12.3 Reversible enzyme inhibitors 342
 12.3.1 Competitive inhibition 342
 12.3.2 Non-competitive inhibition 350
 12.3.3 Uncompetitive inhibition 354
12.4 Other types of inhibitors 356
 12.4.1 Slow, tight-binding inhibitors 356
 12.4.2 Covalent enzyme modifiers 358
 12.4.3 Mechanism-based enzyme inhibitors 360
12.5 Summary 361

Further reading 362

13 Metals in medicine: inorganic medicinal chemistry 364
OLE FARVER

13.1 Introduction 364
 13.1.1 Essential and non-essential elements 365
 13.1.2 History 366
13.2 Classification of inorganic pharmaceuticals 367
13.3 The human body and bioinorganic chemistry 368
13.4 Co-ordination chemistry 371
 13.4.1 Chelate effect 371
 13.4.2 Hard and soft acids and bases (HSAB principle) 373
 13.4.3 Kinetics: inert and labile complexes 374
 13.4.4 Redox reactions 377
 13.4.5 The trans-effect 378
 13.4.6 Plasma mobilization index 380
13.5 Chelate therapy 382
 13.5.1 Synergistic chelate therapy 382
13.6 Selected chelates 383
 13.6.1 BAL 383
 13.6.2 D-penicillamine 383
 13.6.3 EDTA 383
 13.6.4 Desferrioxamine 385
13.7 Drug–metal ion interaction 385
 13.7.1 Undesirable interactions 386
 13.7.2 Beneficial interactions 386
13.8 Inorganic chemistry and pharmaceuticals 386
 13.8.1 Alkali metals 387
 13.8.2 Alkaline earth metals 389
 13.8.3 The chromium group 391
 13.8.4 Iron and cobalt 392
 13.8.5 Platinum and ruthenium 398
 13.8.6 Copper, silver, and gold 399
 13.8.7 Zinc, cadmium, and mercury 404
 13.8.8 Antimony and bismuth 407
13.9 Concluding remarks 408
Further reading 409

14 Design and application of prodrugs 410
CLAUS S. LARSEN AND JESPER ØSTERGAARD

14.1 The prodrug concept 410
 14.1.1 Definition 410
 14.1.2 Barriers to drug action 411
 14.1.3 Prodrug design in an industrial setting 412
14.2 Choice and function of the pro-moiety 413
 14.2.1 Cleavability of the prodrug bond 414
 14.2.2 Modification of physicochemical properties 417
 14.2.3 Macromolecular transport vectors 423
14.3 Bioreversible derivatives for various functional groups 426
 14.3.1 Esters as prodrugs for compounds containing carboxyl or hydroxy groups 428
 14.3.2 Prodrugs for amides, imides and other NH-acidic compounds 430
 14.3.3 Prodrugs for amines 435
 14.3.4 Prodrugs for compounds containing carbonyl groups 437
 14.3.5 Drug activation from intramolecular cyclization reactions 438
 14.3.6 Cyclic prodrugs involving two functional groups of the drug 442
14.4 Applications of the prodrug approach 444
 14.4.1 Biomembrane passage and bioavailability 444
 14.4.2 Site-specific drug delivery 451
 14.4.3 Improvement of drug formulation 454
Further reading 458

15 Peptides and peptidomimetics 459
KRISTINA LUTHMAN AND ULI HACKSELL

15.1 Introduction 459
 15.1.1 Peptide structure 459
 15.1.2 Solid phase peptide synthesis 460
15.1.3 Biosynthesis of peptides 461
15.1.4 Peptide–G-protein coupled receptor interactions 463

15.2 Strategies for peptidomimetic drug discovery 465
15.2.1 Design of peptidomimetics 466
15.2.2 Discovery of peptidomimetics using receptor/enzyme-based screening 473

Further reading 481

16 Classical antiviral agents and design of new antiviral agents 486
PIET HERDEWIJN AND ERIK DE CLERCQ

16.1 Classical antiviral agents 486
16.1.1 Introduction 486
16.1.2 Base-modified pyrimidine nucleosides as antiherpes agents 488
16.1.3 Sugar-modified purine nucleosides 491
16.1.4 Ribavirin 493
16.1.5 Compounds which inhibit the replication of the human immunodeficiency virus (HIV) 494

16.2 Design of new antiviral agents 500
16.2.1 Nucleoside prodrugs 500
16.2.2 Analogs of 5'-monophosphates and nucleotide prodrugs 501
16.2.3 Nucleosides with the non-natural l-configuration 504
16.2.4 Non-nucleoside antivirals outside the anti-HIV field 504
16.2.5 New developments in the anti-HIV field 507

Further reading 510

17 Anticancer agents 511
INGRID KJØLLER LARSEN AND JETTE SANDHOLM KASTRUP

17.1 DNA as target for anticancer drugs 511
17.1.1 Drugs interacting directly with DNA 512
17.1.2 Drugs interfering with DNA synthesis 537

17.2 Mitotic apparatus as target for drugs 550
17.2.1 Drugs interfering with the Vinca alkaloid binding site of tubulin 550
17.2.2 Drugs interfering with the colchicine binding site of tubulin 553
17.2.3 Drugs stabilizing the assembly of tubulin into microtubules 554

Further reading 556

Index 559