Pharmacogenomics

The Search for Individualized Therapies

Edited by
Julio Licinio and Ma-Li Wong
Contents

Preface VII

List of Contributors XXIII

Color Plates XXXI

1 Introduction to Pharmacogenomics: Promises, Opportunities, and Limitations 1
 Urs A. Meyer
 Abstract 1
 1.1 Pharmacogenetics – The Roots of Pharmacogenomics 1
 1.2 Pharmacogenomics – It is Not just Pharmacogenetics 3
 1.2.1 Genetic Drug Response Profiles 3
 1.2.2 The Effect of Drugs on Gene Expression 4
 1.2.3 Pharmacogenomics in Drug Discovery and Drug Development 5
 1.3 Pharmacogenomics – Hope or Hype? 5
 1.4 References 7

2 The Human Genome 9
 Samuel Broder, G. Subramanian and J. Craig Venter
 Abstract 9
 2.1 Introduction 9
 2.2 Expressed Sequence Tags (ESTs) and Computational Biology: The Foundation of Modern Genomic Science 10
 2.3 Microbial Genomics 12
 2.3.1 Computational Analysis of Whole Genomes 13
 2.3.2 Comparative Genome Analysis 13
 2.4 Genomic Differences that Affect the Outcome of Host-Pathogen Interactions: A Template for the Future of Whole-Genome-Based Pharmacologic Science 18
 2.5 More Lessons from the Human Genome 22
 2.5.1 Protein-Coding Genes 22
 2.5.2 Repeat Elements 23
3 Turning SNPs into Useful Markers of Drug Response

Jeanette J. McCarthy

Abstract

3.1 Introduction

3.2 Two Approaches for Employing SNPs in Pharmacogenomics

3.2.1 Candidate Gene Studies

3.2.2 Whole Genome Linkage Disequilibrium Mapping Studies

3.2.3 Comparison of Candidate Gene and Whole Genome LD Mapping

3.3 How Many SNPs are Needed and What Kind are Useful for Pharmacogenomic Studies

3.3.1 Location

3.3.2 Frequency

3.3.3 Haplotype Analysis

3.3.4 Number of SNPs Required for Whole Genome LD Mapping Studies

3.4 Study Designs for Pharmacogenomic Analysis

3.4.1 Challenges Unique to Pharmacogenomics

3.4.2 Clinical Trials, Case-Control and Cohort Studies

3.5 Analytical Issues in Pharmacogenomic Studies

3.5.1 Effect of LD on Sample Size

3.5.2 Multiple Hypothesis Testing

3.5.3 Gene–Drug Interaction

3.6 Development of Pharmacogenomic Markers

3.7 Conclusion

3.8 References

4 Association Studies in Pharmacogenomics

Laurent Essioux, Benoit Destenaves, Philippe Jais and Francois Thomas

Abstract

4.1 Introduction

4.2 Variability and ADR in Drug Response: Contribution of Genetic Factors

4.3 Multiple Inherited Genetic Factors Influence the Outcome of Drug Treatments

4.3.1 Background

4.3.2 Liver Metabolism Enzymes

4.3.3 Transporters
4.3.4 Plasma Binding Proteins 62
4.3.5 Drug Targets 62
4.4 Association Studies in Pharmacogenomics 64
4.4.1 The Principles of Association Studies 64
4.4.2 Study Design 64
4.4.3 Direct Approach: A Hypothesis-Driven Strategy 66
4.4.4 Indirect Approach: A Hypothesis-Generating Strategy 67
4.5 SNP Assembly into Maps 68
4.6 Strategies for Pharmacogenomic Association Studies 69
4.6.1 Candidate Genes 69
4.6.2 Genome-Wide Scan 71
4.7 Expected Benefits of Pharmacogenomics in Drug R & D 72
4.7.1 Background 72
4.7.2 Identification of New Targets 72
4.7.3 Pre-Clinical Development Phase 74
4.7.4 Pre-Marketing Clinical Trials 74
4.7.5 Post-Marketing Phase IV 75
4.7.6 Targeting Drugs to the Individual 76
4.8 Conclusion 76
4.9 References 77

5 Genomics Applications that Facilitate the Understanding of Drug Action and Toxicity 83
L. Mike Furness

5.1 Platform Technologies 83
5.1.1 Genomics 83
5.1.2 Proteomics 85
5.1.3 Bioinformatics 86
5.2 The Pharmaceutical Process 89
5.3 Application to the Pharmaceutical Industry 91
5.3.1 Understanding Biology and Disease 92
5.3.2 Target Identification and Validation 101
5.3.3 Drug Candidate Identification and Optimization 103
5.3.4 Safety and Toxicology Studies 106
5.4 Application to the Medical Research Community 108
5.5 Conclusions 109
5.6 References 110

6 The Role of Pharmacogenetics in Drug Discovery and Therapeutics 127
Klaus Lindpaintner

6.1 Introduction 127
6.2 Definition of Terms 127
6.2.1 Pharmacogenomics 127
6.2.2 Pharmacogenetics 128
6.3 Pharmacogenomics: Finding New Medicines Quicker and More Efficiently 129
6.4 Pharmacogenetics: More Targeted, More Effective Medicines for our Patients 130
6.4.1 Genes and Environment 130
6.4.2 An Attempt at a Systematic Classification 130
6.4.2.1 Pharmacogenetics as a Consequence of “Subclinical” Differential Diagnosis 132
6.4.2.2 Pharmacogenetic Effects of Palliative Drugs due to Structural Target Diversity 135
6.4.2.3 Different Classes of Markers 137
6.4.2.4 Complexity is to be Expected 137
6.5 Pharmacogenetic Testing for Drug Efficacy vs. Safety 137
6.6 Ethical – Societal Aspects of Pharmacogenetics 139
6.7 Summary 141
6.8 References 141

7 Pharmacogenomics and Drug Design 143
Philip Dean, Paul Gane and Edward Zanders
Abstract 143
7.1 Introduction 143
7.2 The Need for Protein Structure Information 144
7.3 Protein Structure and Variation in Drug Targets – the Scale of the Problem 145
7.4 Mutations in Drug Targets Leading to Changes in the Ligand Binding Pocket 146
7.4.1 \(\beta_2 \)-Adrenergic Receptor 146
7.4.2 STI-571 and BCR-ABL 147
7.5 Resistance to Human Immunodeficiency Virus (HIV) 148
7.6 \textit{In silico} Design of Small Molecules 148
7.7 Automated Drug Design Methods 149
7.8 Structure-Based Drug Design 150
7.9 Ligand-Based Drug Design 154
7.10 Future Directions 155
7.11 Conclusions 156
7.12 References 156

8 The Pharmacogenomics of Human P-Glycoprotein 159
Martin F. Fromm and Michel Eichelbaum
Abstract 159
8.1 Introduction: Importance of Active Transport Mechanisms for Uptake, Tissue Distribution and Elimination of Xenobiotics 159
8.2 Structure of the Human \textit{MDRI} Gene 160
8.3 P-glycoprotein Expression in Healthy Tissues 161
8.4 Function of P-Glycoprotein 161
8.4.1 Intestinal P-Glycoprotein 164
8.4.2 P-Glycoprotein and the Blood–Brain Barrier 164
8.4.3 P-Glycoprotein in Other Tissues 165
8.5 Identification of MDR1 Mutations and Their Consequences for Function 165
8.6 Racial Differences in Frequency of MDR1 Mutations 170
8.7 MDR1 Mutations and the Potential Risk for Idiopathic or Spontaneous Diseases 171
8.7.1 P-Glycoprotein and Ulcerative Colitis 171
8.7.2 P-Glycoprotein and HIV Infection 172
8.7.3 P-Glycoprotein and Renal Cell Carcinoma 173
8.8 Aspects of P-Glycoprotein Regulation 173
8.9 Conclusions 174
8.10 References 175

9 Pharmacogenomics of Drug Transporters 179
Rommel G. Tirona and Richard B. Kim
Abstract 179
9.1 Introduction 179
9.2 Organic Anion Transporting Polypeptide Family (OATP) 180
9.2.1 OATP-A 180
9.2.2 OATP-B 183
9.2.3 OATP-C 187
9.2.4 OATP-E 189
9.2.5 OATP8 189
9.2.6 Other OATPs 190
9.3 Organic Anion Transporter Family (OAT) 190
9.3.1 OAT1 190
9.3.2 OAT2 190
9.3.3 OAT3 191
9.3.4 OAT4 191
9.4 Organic Cation Transporter Family (OCT) 191
9.4.1 OCT1 191
9.4.2 OCT2 192
9.4.3 OCT3 192
9.5 Novel Organic Cation Transporter Family (OCTN) 193
9.5.1 OCTN1 193
9.5.2 OCTN2 193
9.6 Peptide Transporter Family (PepT) 194
9.6.1 PepT1 194
9.6.2 PepT2 194
9.7 Multidrug Resistance-Associated Proteins (MRP) 194
9.7.1 MRP1 194
9.7.2 MRP2 195
9.7.3 MRP3 196
10 Pharmacogenomics of Asthma Treatment 215
Lyle J. Palmer, Eric S. Silverman, Jeffrey M. Drazen and Scott T. Weiss
Abstract 215
10.1 Introduction 215
10.2 Pharmacogenomic Pathways and Phenotypes 216
10.3 Genetic Association Analysis Using Single Nucleotide Polymorphisms (SNPs) 218
10.4 Previous Studies of Asthma Pharmacogenomics 220
10.4.1 Pharmacogenomics of β-Agonists in Asthma 220
10.4.2 Pharmacogenomics of Leukotrienes in Asthma 223
10.5 Statistical Issues 225
10.5.1 Genetic Heterogeneity and Population Stratification 225
10.5.2 Statistical Power 226
10.6 Future Directions and Issues 227
10.7 Conclusions 229
10.8 References 229

11 Endothelial Cells are Targets for Hydroxy Urea: Relevance to the Current Therapeutic Strategy in Sickle Cell Disease 235
Claudine Lapoumeroulie, Manuel Brun, Marie Hélène Odièvre and Rajagopal Krishnamoorthy
11.1 Hydroxy Urea 235
11.2 Sickle Cell Anemia 236
11.3 Hydroxy Urea Therapy in Sickle Cell Anemia 238
11.4 Issues 239
11.5 Experimental Study Design 240
11.6 Major Effect of HU 241
11.7 ICAM-1 245
11.8 ET-1 247
11.9 Conclusion 247
11.10 References 248
12 Pharmacogenomics and Complex Cardiovascular Diseases – Clinical Studies in Candidate Genes
B. R. Winkelmann, M. Nauck, M. M. Hoffmann, and W. Marz
Abstract
12.1 Introduction
12.2 Complexity of Clinical Phenotypes
12.3 Limitations
12.4 Studies of the Impact of Nucleotide Sequence Variation on Drug Effects
12.4.1 Angiotensin I-Converting Enzyme Gene
12.4.2 Angiotensinogen Gene
12.4.3 Drug Metabolizing Enzymes and Drug Transporters
12.4.4 Genetic Polymorphisms of the β-Adrenoreceptors
12.5 Conclusions
12.6 References

13 Pharmacogenomics of Lipid-Lowering Agents
M. M. Hoffmann, B. R. Winkelmann, H. Wieland, and W. Marz
Abstract
13.1 Introduction
13.2 The Metabolism of Plasma Lipoproteins
13.3 Pharmacogenomics of Lipid-Lowering Agents
13.3.1 Bile Acid Sequestrants (Resins)
13.3.2 Fibrates
13.3.3 Niacin (Nicotinic Acid)
13.3.4 Probucol
13.3.5 HMG-CoA Reductase Inhibitors (Statins)
13.4 Conclusion
13.5 References

14 Pharmacogenomics of Chemotherapeutic Agents in Cancer Treatment
F. Innocenti, L. Iyer, and M. R. Ratain
Abstract
14.1 Pharmacological Treatment of Cancer and Importance of Pharmacogenomics
14.2 Pharmacogenetic Determinants of Toxicity after Cancer Chemotherapy
14.2.1 6-Mercaptopurine and TPMT Pharmacogenetics
14.2.1.1 Clinical Use and Toxicity of 6-MP in Childhood Acute Lymphoblastic Leukemia
14.2.1.2 Metabolism of 6-MP – Activating and Inactivating Pathways and Their Clinical Relevance
14.2.1.3 Reduced Tolerance to 6-MP in Patients with Genetic Impairment of TPMT Activity 286
14.2.1.4 Prediction of TPMT Deficiency 287
14.2.1.5 6-MP Dose Adjustment in ALL Patients 288
14.2.2 5-Fluorouracil and DPD Pharmacogenetics 289
14.2.2.1 Clinical Use and Toxicity of 5-Fluorouracil 289
14.2.2.2 Metabolism of 5-FU – Activating and Inactivating Pathways and Their Clinical Relevance 289
14.2.2.3 Life-Threatening Toxicity in DPD-Deficient Patients 290
14.2.2.4 DPD Genotype and Molecular Basis of DPD Deficiency 291
14.2.2.5 Measures to Predict DPD Deficiency in Patients Receiving 5-FU 291
14.2.3 Irinotecan and UGT1A1 Pharmacogenetics 292
14.2.3.1 Clinical Use and Toxicity of Irinotecan 292
14.2.3.2 Metabolism of Irinotecan – Activating and Inactivating Pathways and Their Clinical Relevance 292
14.2.3.3 Increased Risk of Toxicity in Cancer Patients with Gilbert's Syndrome 294
14.2.3.4 Gilbert's Syndrome Genotype 294
14.2.3.5 Gilbert's Syndrome Phenotype and SN-38 Glucuronidation 294
14.2.3.6 Possible Measures to Predict Patients at High Risk of Toxicity after Irinotecan 295
14.2.4 Amonafide and NAT2 Pharmacogenetics 296
14.2.4.1 Metabolism of Amonafide and NAT2 Polymorphism 296
14.2.4.2 Dose Individualization of Amonafide Based on N-Acetylator Phenotype 296
14.2.5 MTHFR Gene Polymorphism in Breast Cancer Patients Receiving CMF Regimen 297
14.2.5.1 MTHFR Function and Polymorphism 298
14.2.5.2 MTHFR Polymorphism as a Determinant of CMF Toxicity 299
14.3 Pharmacogenetic Determinants of Response after Cancer Chemotherapy 299
14.3.1 Glutathione-S-Transferase Mutations in Cancer Chemotherapy 299
14.3.1.1 GST Pharmacogenetics and Outcome in Solid Tumor Patients 300
14.3.1.2 GST Pharmacogenetics and Outcome in Childhood Leukemias 300
14.3.2 Thymidylate Synthase Gene Promoter Polymorphism and Response to 5-Fluorouracil-Based Chemotherapy 301
14.3.2.1 Regulation of TS Gene Expression 301
14.3.2.2 Genotyping of the TS Promoter Variable Tandem Repeat and Clinical Outcome 302
14.4 Conclusion 302
14.5 References 303
15 Pharmacogenomics of the Blood–Brain Barrier 311
Jean-Michel Scherrmann

Abstract 311

15.1 Basic Concepts Underlying the Pharmacogenomics of the Blood–Brain Barrier 312
15.1.1 The Two Barriers 312
15.1.2 Constituents of the Blood–Brain Barrier 313
15.1.2.1 Endothelial Cells in the Blood–Brain Barrier 313
15.1.2.2 Pericytes in the Blood–Brain Barrier 315
15.1.2.3 Astrocytes in the Blood–Brain Barrier 317
15.1.2.4 Basement Membrane at the Blood–Brain Barrier 317
15.2 The Main Gene and Protein Targets for Pharmacogenomics of the Blood–Brain Barrier 319
15.2.1 Drug-Metabolizing Enzymes at the Blood–Brain Barrier 319
15.2.2 Drug-Carrier Transporters at the Blood–Brain Barrier 321
15.2.2.1 Mono- or Bidirectional Transporters for Small Compounds 321
15.2.2.2 Peptide and Protein Transporters 323
15.2.2.3 A New Generation of Efflux Transporters 324
15.2.3 Tight Junctions, Receptors and Cell Cross-Talk at the Blood–Brain Barrier 326
15.3 Pharmacogenomics of the Blood–Brain Barrier 328
15.3.1 Objectives for Pharmacogenomics of the Blood–Brain Barrier 328
15.3.2 Current Experimental Approaches and Their Limitations 328
15.3.2.1 In vitro Pharmacogenomic Studies 329
15.3.2.2 In vivo Pharmacogenomic Studies 330
15.4 Conclusion 331
15.5 References 332

16 Pharmacogenomics and the Treatment of Neurological Disease 337
David B. Goldstein, V. Ramachandran, Nicholas W. Wood and Simon D. Shorvon

Abstract 337

16.1 Introduction 338
16.2 Pharmacogenomic Approaches 339
16.2.1 Drug Response Genes (DRG) 339
16.2.2 Population Structure and Variable Drug Response 341
16.2.3 Association Studies and Neurological Pharmacogenomics 343
16.3 Conclusions 345
16.4 References 346

17 Pharmacogenomics of Neurodegenerative Diseases: Examples and Perspectives 347
Philippe Hantraye, Emmanuel Brouillet and Christian Néri

Abstract 347
14.2.1.3 Reduced Tolerance to 6-MP in Patients with Genetic Impairment of TPMT Activity 286
14.2.1.4 Prediction of TPMT Deficiency 287
14.2.1.5 6-MP Dose Adjustment in ALL Patients 288
14.2.2 5-Fluorouracil and DPD Pharmacogenetics 289
14.2.2.1 Clinical Use and Toxicity of 5-Fluorouracil 289
14.2.2.2 Metabolism of 5-FU – Activating and Inactivating Pathways and Their Clinical Relevance 289
14.2.2.3 Life-Threatening Toxicity in DPD-Deficient Patients 290
14.2.2.4 DPD Genotype and Molecular Basis of DPD Deficiency 291
14.2.2.5 Measures to Predict DPD Deficiency in Patients Receiving 5-FU 291
14.2.3 Irinotecan and UGT1A1 Pharmacogenetics 292
14.2.3.1 Clinical Use and Toxicity of Irinotecan 292
14.2.3.2 Metabolism of Irinotecan – Activating and Inactivating Pathways and Their Clinical Relevance 292
14.2.3.3 Increased Risk of Toxicity in Cancer Patients with Gilbert's Syndrome 294
14.2.3.4 Gilbert's Syndrome Genotype 294
14.2.3.5 Gilbert's Syndrome Phenotype and SN-38 Glucuronidation 294
14.2.3.6 Possible Measures to Predict Patients at High Risk of Toxicity after Irinotecan 295
14.2.4 Amonafide and NAT2 Pharmacogenetics 296
14.2.4.1 Metabolism of Amonafide and NAT2 Polymorphism 296
14.2.4.2 Dose Individualization of Amonafide Based on N-Acetylator Phenotype 296
14.2.5 MTHFR Gene Polymorphism in Breast Cancer Patients Receiving CMF Regimen 297
14.2.5.1 MTHFR Function and Polymorphism 298
14.2.5.2 MTHFR Polymorphism as a Determinant of CMF Toxicity 299
14.3 Pharmacogenetic Determinants of Response after Cancer Chemotherapy 299
14.3.1 Glutathione-S-Transferase Mutations in Cancer Chemotherapy 299
14.3.1.1 GST Pharmacogenetics and Outcome in Solid Tumor Patients 300
14.3.1.2 GST Pharmacogenetics and Outcome in Childhood Leukemias 300
14.3.2 Thymidylate Synthase Gene Promoter Polymorphism and Response to 5-Fluorouracil-Based Chemotherapy 301
14.3.2.1 Regulation of TS Gene Expression 301
14.3.2.2 Genotyping of the TS Promoter Variable Tandem Repeat and Clinical Outcome 302
14.4 Conclusion 302
14.5 References 303
17.1 Mechanisms of Neuronal Death in Neurodegenerative Disorders: General Concepts 347
17.1.1 Apoptosis 348
17.1.2 Excitotoxicity: Direct and Indirect Activation of Glutamate Receptors 350
17.1.3 Autophagy 352
17.1.4 Pharmacogenomics of Cell Death Pathways: Mechanisms from Cell to Brain 352
17.2 Neurodegenerative Diseases 353
17.2.1 Huntington’s Disease 353
17.2.2 Parkinson’s Disease 358
17.3 Perspectives on the Pharmacogenomics of Neurodegenerative Processes 361
17.4 Conclusions 362
17.5 References 363

18 Psychiatric Pharmacogenetics: Prediction of Treatment Outcomes in Schizophrenia 369
Mario Masellis, Vincenzo S. Basile, Alex Gubanov and James L. Kennedy
Abstract 369
18.1 Introduction 369
18.2 Schizophrenia and its Pharmacotherapy: An Example of Major Mental Illness 370
18.3 Pharmacodynamics of Clozapine Response 371
18.4 Pharmacokinetics of Clozapine Response 372
18.5 Tardive Dyskinesia 373
18.6 Weight Gain 374
18.7 Conclusions and Future Directions 375
18.8 References 375

19 Pharmacogenomics of Major Depression and Antidepressant Treatment 379
Ma-Li Wong, Israel Alvarado and Julio Licinio
Abstract 379
19.1 Introduction 379
19.2 Clinical Aspects 380
19.3 Pharmacology of Depression 385
19.4 Treatment Targets 386
19.5 Pharmacogenomics of Depression: The Potential for Drug Discovery 386
19.6 Pharmacogenomics of Depression: Treatment Tailored to the Individual 387
19.7 Serotonin Transporter Gene 388
19.8 Additional Targets 389
19.9 Cytochrome P450 System – Drug-metabolizing Enzymes 390
20 Pharmacogenomics of Bipolar Disorder

Husseini K. Manji, Jing Du and Guang Chen

Abstract

20.1 Introduction

20.2 Effects of Mood Stabilizers on Immediate Early Genes

20.3 The Use of a Concerted RT-PCR mRNA Differential Display Screening Strategy to Identify Genes whose Expression is Regulated by Mood-Stabilizing Agents

20.4 Identification of the Major Cytoprotective Protein bcl-2 as a Target for Mood Stabilizers

20.5 Human Clinical-Research Studies Arising Directly from the Rodent mRNA RT-PCR Studies

20.6 Regulation of the Expression of an mRNA-Binding and Stabilizing Protein by Mood Stabilizers

20.6.1 Regulation of mRNA Stability by RNA-Binding Proteins

20.7 The Pharmacogenomics of Bipolar Disorder: A Synthesis

20.8 Conclusions

20.9 References

21 Pharmacogenomics of Alcoholism

Thomas D. Hurley, Howard J. Edenberg and Ting-Kai Li

Abstract

21.1 Introduction

21.2 Definitions and Diagnostic Criteria

21.3 Alcohol Pharmacokinetics and Metabolism

21.4 Pharmacodynamic Effects of Ethanol on the Brain

21.5 Structural and Kinetic Features of Alcohol and Aldehyde Dehydrogenase

21.5.1 Alcohol Dehydrogenase

21.5.2 Aldehyde Dehydrogenase

21.6 Genomic Structure and Regulation of the ADH and ALDH Genes

21.6.1 ADH Genes

21.6.2 ALDH Genes

21.7 Genome Screens for Alcohol Related Phenotypes in Humans

21.8 Genome Screens for QTLs Affecting Alcohol Related Phenotypes in Animal Models

21.9 Genome Screens for Alcohol-Related Phenotypes in Rodents

21.10 Clinical Correlations of the Pharmacogenomics of ADH and ALDH, Alcohol Drinking Behavior, Alcoholism and the System Effects of Alcohol
22 Pharmacogenomics of Tobacco Addiction 443
Elaine Johnstone, Marcus Munafò, Matt Neville, Siân Griffiths, Mike Murphy and Robert Walton
Abstract 443
22.1 The Neurophysiological Basis for Nicotine Addiction 443
22.2 Genetic Variation and Smoking Predisposition 445
22.2.1 Alleles Affecting Central Dopaminergic Function 446
22.2.2 The Relationship Between Genetically Determined Variants of Cytochrome P450 Enzymes and Tobacco Dependence 447
22.2.2.1 Effects of Genetically Determined Variation in Nicotine Metabolism on the Development of Nicotine Dependence 447
22.2.2.2 Metabolism of Other Pharmacologically Active Compounds by Cytochrome P450 Enzymes 449
22.2.3 Future Targets for Candidate Gene Studies 450
22.3 Genome Scans to Investigate Tobacco Dependence 450
22.3.1 Genomic Areas Linked with Susceptibility to Nicotine Dependence 451
22.3.2 Biallelic or Multiallelic Markers for Linkage Studies? 451
22.3.3 Genome Scans in the Future 452
22.4 Evidence for the Genomic Basis of Nicotine Addiction from Animal Models 452
22.5 Applying Pharmacogenomics to Therapy for Nicotine Addiction 454
22.5.1 Mechanism of Action of Existing Treatments and New Directions for Drug Therapy 454
22.5.2 Classifying Smokers According to the Molecular Basis for their Habit 455
22.5.3 Accurate Determination of Dosage for Therapeutic Interventions 455
22.5.4 “Minimum SNP Set” for Tobacco Dependence and Need for High-Throughput Genotyping 455
22.6 Conclusion 457
22.7 References 457

23 Pharmacogenomics of Opioid Systems 461
Terry Reisine
Abstract 461
23.1 Introduction 461
23.2 Cloning of the Opiate Receptors 462
23.3 Distribution of the Opiate Receptors 464
23.3.1 \(\mu \) Receptor 464
23.3.2 \(\delta \) Receptors 465
23.3.3 \(\kappa \) Receptors 466
23.4 Pharmacological Properties of the Cloned Opiate Receptors 466
23.5 Functional Properties of the Cloned Opiate Receptors 467
23.6 G Protein Coupling to the Opiate Receptors 468
23.7 Regulation of Opiate Receptors 470
23.7.1 \(\mu \) Receptor 471
23.7.2 \(\delta \) Receptors 473
23.7.3 \(\kappa \) Receptors 474
23.8 Structure-Function Analysis of the Cloned Opiate Receptors 474
23.8.1 Point Mutations of the Opiate Receptors 475
23.9 Chimeric Opiate Receptors 477
23.9.1 \(\kappa \) Receptor 477
23.9.2 \(\delta \) Receptor 478
23.9.3 \(\mu \) Receptor 479
23.10 The C-Terminus of the Opiate Receptors 479
23.11 Future Directions 480
23.12 References 481

24 Ethnicity and Pharmacogenomics 489
Howard L. McLeod and Margaret M. Ameyaw
Abstract 489
24.1 Genetic Variation in Drug Metabolism and Disposition 489
24.2 Ethnic Variation in Drug Disposition 490
24.3 Ethnic Variation in Polymorphic Genes 491
24.3.1 Reasons for Ethnic Variation in Allele Frequencies 491
24.3.2 Tracing the Molecular History of Genetic Polymorphisms 492
24.4 Variability Pharmacogenetic Polymorphisms Within a Population 492
24.4.1 Interpretation of African American Data with Respect to Africans Living in Africa 493
24.5 Relevance of a Pharmacogenomic Approach to Therapeutics in Different Ethnic Groups 493
24.6 Ethnic Variation of Thiopurine Methyltransferase Alleles 494
24.6.1 Influence of Ethnicity on Drug Transport Pharmacogenetics 499
24.7 Ethnic Variation in a Target for Drug Therapy 501
24.7.1 Comparison of Mutant Alleles Across the Three Major Ethnic Groups (African, Asian and Caucasian) 505
24.7.2 CYP3A4 and MDR1 Mutant Genotypes in Ghanaians 506
24.8 Pharmacogenomics as a Public Health Tool 508
24.9 Non-Scientific Challenges for Pharmacogenomics 509
24.10 Conclusions 509
24.11 References 510