Probabilistic Design Tools for Vertical Breakwaters

HOCINE OUMERACI, ANDREAS KORTENHAUS
Technical University of Braunschweig, Leichtweiß-Institut für Wasserbau, Braunschweig, Germany

WILLIAM ALLSOP
HR Wallingford, Wallingford, U.K.

MAARTEN DE GROOT
Geodelft, Delft, The Netherlands

ROGER CROUCH
University of Sheffield, Department of Civil and Structural Engineering, Sheffield, U.K.

HAN VRIJLING, HESSEL VOORTMAN
Delft University of Technology, Hydraulic and Offshore Engineering Section, Delft, The Netherlands

Edited by
Andreas Kortenhaus and Hessel Voortman

A.A. BALKEMA PUBLISHERS / LISSE / ABINGDON / EXTON (PA) / TOKYO
TABLE OF CONTENTS

PREFACE

A GUIDE TO THIS BOOK

CHAPTER 1

1.1 **GENERAL BACKGROUND, OPPORTUNITY AND MOTIVATIONS**

1.1.1 General background and opportunity

1.1.2 Motivations and Position of the Design Problem

1.1.2.1 Motivations for Monolithic Coastal Structures / Breakwaters

1.1.2.2 Motivations for Probabilistic Design Methods

1.1.2.3 Position of the Design Problem

1.2 **BRIEF PRESENTATION OF PROVERBS**

1.2.1 Objectives

1.2.2 Research Issues

1.2.3 Research Strategy and Development Procedure for Probabilistic Design Tools

1.2.3.1 Overall Strategy

1.2.3.2 Development Procedure for Probabilistic Tools

1.2.3.3 Development Procedure for Partial Safety Factor System (Level I)

1.2.3.4 Representative Example Structures for Application

1.3 **KEY RESULTS AND THEIR PRACTICAL IMPORTANCE**

1.3.1 Hydrodynamic Aspects (Task 1)

1.3.1.1 Parameter map for wave load classification

1.3.1.2 New formulae to predict impact loading

1.3.1.3 Effect entrained/entrapped air on scaling impact loads

1.3.1.4 Effect of caisson length, wave obliquity and short-crestedness on impact forces

1.3.1.5 Seaward impact forces induced by wave overtopping

1.3.1.6 Artificial neural network modelling of wave force

1.3.1.7 New prediction formulae for pulsating wave forces on perforated caisson breakwaters

1.3.1.8 New wave load formulae for crown walls

TABLE OF CONTENTS

PREFACE

A GUIDE TO THIS BOOK

CHAPTER 1

1.1 **GENERAL BACKGROUND, OPPORTUNITY AND MOTIVATIONS**

1.1.1 General background and opportunity

1.1.2 Motivations and Position of the Design Problem

1.1.2.1 Motivations for Monolithic Coastal Structures / Breakwaters

1.1.2.2 Motivations for Probabilistic Design Methods

1.1.2.3 Position of the Design Problem

1.2 **BRIEF PRESENTATION OF PROVERBS**

1.2.1 Objectives

1.2.2 Research Issues

1.2.3 Research Strategy and Development Procedure for Probabilistic Design Tools

1.2.3.1 Overall Strategy

1.2.3.2 Development Procedure for Probabilistic Tools

1.2.3.3 Development Procedure for Partial Safety Factor System (Level I)

1.2.3.4 Representative Example Structures for Application

1.3 **KEY RESULTS AND THEIR PRACTICAL IMPORTANCE**

1.3.1 Hydrodynamic Aspects (Task 1)

1.3.1.1 Parameter map for wave load classification

1.3.1.2 New formulae to predict impact loading

1.3.1.3 Effect entrained/entrapped air on scaling impact loads

1.3.1.4 Effect of caisson length, wave obliquity and short-crestedness on impact forces

1.3.1.5 Seaward impact forces induced by wave overtopping

1.3.1.6 Artificial neural network modelling of wave force

1.3.1.7 New prediction formulae for pulsating wave forces on perforated caisson breakwaters

1.3.1.8 New wave load formulae for crown walls
VI Probabilistic Design Tools for Vertical Breakwaters

1.3.1.9 Development of wave load formulae for High Mound Composite Breakwaters 33

1.3.2 Geotechnical Aspects (Task 2) 35
1.3.2.1 Data base for design soil parameters 35
1.3.2.2 Engineering "dynamic models" 38
1.3.2.3 Instantaneous pore pressures 40
1.3.2.4 Degradation and residual pore pressures 41
1.3.2.5 Limit state equations 42
1.3.2.6 Uncertainties 42
1.3.2.7 Influence of design parameters on failure modes 42

1.3.3 Structural Aspects (Task 3) 43
1.3.3.1 Analysis of existing codes 44
1.3.3.2 Pre-service failure modes 44
1.3.3.3 Loads for in-service conditions 46
1.3.3.4 In-service structural failure modes 47
1.3.3.5 Hierarchy of refined models 48
1.3.3.6 Durability of reinforced concrete members 48

1.3.4 Probabilistic Design Tools (Task 4) 48
1.3.5 Toward probabilistic risk analysis and management 55

CHAPTER 2 61

2.1 INTRODUCTION 61
2.1.1 Objectives of Task 1 61
2.1.1.1 Technical progress 62
2.1.2 Outline of deterministic design procedure 62
2.1.2.1 Step 1: Identification of main geometric and wave parameters 63
2.1.2.2 Step 2: First estimate of wave force / mean pressure over wall height 64
2.1.2.3 Step 3: Improve calculation of horizontal and up-lift forces 64
2.1.2.4 Step 4: Revise estimates of caisson size 65
2.1.2.5 Step 5: Identify loading case using parameter map 65
2.1.2.6 Step 6: Initial calculation of impact force 65
2.1.2.7 Step 7: Estimate percentage of breaking waves leading to impacts Pi% 66
2.1.2.8 Step 8: Estimate impact force using Oumeraci & Kortenhaus' method 66
2.1.2.9 Step 9: Estimate impact rise time and duration 66
2.1.2.10 Step 10: Estimate uplift forces under impacts 66
Contents VII

2.1.2.11 Step 11: Scale corrections 67
2.1.2.12 Step 12: Pressure distributions 67

2.2 WAVES AT THE STRUCTURE 67
 2.2.1 Wave conditions at the structure 67
 2.2.1.1 Near-shore wave transformation 72
 2.2.1.2 Depth-limited breaking 73
 2.2.2 Use of parameter map 75
 2.2.3 Estimation of proportion of impacts 78

2.3 HYDRAULIC RESPONSES 82
 2.3.1 Wave transmission over caissons 82
 2.3.2 Wave overtopping discharges 84
 2.3.3 Wave reflections 84
 2.3.3.1 Vertical breakwaters and seawalls 84
 2.3.3.2 Perforated structures 84

2.4 PULSATING WAVE LOADS 87
 2.4.1 Horizontal and vertical forces / pressures 87
 2.4.2 Seaward or negative forces 88
 2.4.2.1 Sainflou’s prediction method 89
 2.4.2.2 Probabilistic design approach for negative forces 90
 2.4.2.3 Deterministic design approach for negative forces 91
 2.4.3 Effects of 3-d wave attack on pulsating loads 92
 2.4.4 Uncertainties and scale corrections 92
 2.4.4.1 Uncertainties 92
 2.4.4.2 Scaling 93
 2.4.5 Use of numerical models 94
 2.4.6 Pressures on berms 95

2.5 WAVE IMPACT LOADS 98
 2.5.1 Horizontal and vertical forces / pressures 98
 2.5.1.1 Horizontal force and rise time 99
 2.5.1.2 Vertical pressure distribution 101
 2.5.1.3 Uplift force 104
 2.5.1.4 Uplift pressure distribution 104
 2.5.1.5 Effect of aeration 105
 2.5.2 Seaward impact forces 106
 2.5.2.1 Physical Model Tests 107
 2.5.2.2 Numerical Model Tests 107
 2.5.2.3 Initial guidance 108
 2.5.3 Effects of 3-d wave attack on impact loadings 110
 2.5.3.1 Horizontal forces 110
 2.5.3.2 Variability of impact forces along the breakwater 110
 2.5.3.3 Effect of caisson length 111
VIII Probabilistic Design Tools for Vertical Breakwaters

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.4</td>
<td>Uncertainties and scale corrections</td>
<td>113</td>
</tr>
<tr>
<td>2.5.4.1</td>
<td>Uncertainties</td>
<td>113</td>
</tr>
<tr>
<td>2.5.4.2</td>
<td>Scale corrections</td>
<td>113</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Use of numerical models</td>
<td>115</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Pressures on berms</td>
<td>116</td>
</tr>
<tr>
<td>2.5.6.1</td>
<td>Pressure-impulse modelling</td>
<td>119</td>
</tr>
<tr>
<td>2.6</td>
<td>BROKEN WAVE LOADS</td>
<td>120</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Strongly depth-limited waves</td>
<td>120</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Wave loads on crown walls</td>
<td>122</td>
</tr>
<tr>
<td>2.6.2.1</td>
<td>Impact pressures</td>
<td>123</td>
</tr>
<tr>
<td>2.6.2.2</td>
<td>Pulsating pressures</td>
<td>125</td>
</tr>
<tr>
<td>2.6.2.3</td>
<td>Uplift pressures</td>
<td>126</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Wave loads on caisson on high mounds</td>
<td>127</td>
</tr>
<tr>
<td>2.6.3.1</td>
<td>Critical wave heights</td>
<td>128</td>
</tr>
<tr>
<td>2.6.3.2</td>
<td>Critical wave pressures</td>
<td>128</td>
</tr>
<tr>
<td>2.6.3.3</td>
<td>Pressures and resultant force for non breaking waves</td>
<td>129</td>
</tr>
<tr>
<td>2.6.3.4</td>
<td>Pressures and resultant force for breaking waves</td>
<td>130</td>
</tr>
<tr>
<td>2.6.3.5</td>
<td>Pressures and resultant force for broken waves</td>
<td>130</td>
</tr>
<tr>
<td>2.6.3.6</td>
<td>Uplift forces</td>
<td>130</td>
</tr>
<tr>
<td>2.7</td>
<td>FIELD MEASUREMENTS AND DATABASE</td>
<td>131</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Dieppe</td>
<td>131</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Porto Torres</td>
<td>131</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Las Palmas</td>
<td>131</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Gijon</td>
<td>131</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Alderney</td>
<td>132</td>
</tr>
<tr>
<td>2.7.6</td>
<td>Field measurement database</td>
<td>133</td>
</tr>
<tr>
<td>2.7.6.1</td>
<td>Definition of database parameters</td>
<td>133</td>
</tr>
<tr>
<td>2.8</td>
<td>ALTERNATIVE LOW REFLECTION STRUCTURES</td>
<td>134</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Perforated vertical walls</td>
<td>134</td>
</tr>
<tr>
<td>2.8.1.1</td>
<td>Introduction</td>
<td>134</td>
</tr>
<tr>
<td>2.8.1.2</td>
<td>Prototype measurements</td>
<td>135</td>
</tr>
<tr>
<td>2.8.1.3</td>
<td>Model tests</td>
<td>137</td>
</tr>
<tr>
<td>2.8.1.4</td>
<td>Methods to predict forces for perforated caissons</td>
<td>139</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Other types of caissons</td>
<td>147</td>
</tr>
<tr>
<td>2.8.2.1</td>
<td>Physics of damping</td>
<td>148</td>
</tr>
<tr>
<td>2.8.2.2</td>
<td>Analysis in time domain</td>
<td>148</td>
</tr>
<tr>
<td>2.8.2.3</td>
<td>Statistical analysis</td>
<td>150</td>
</tr>
</tbody>
</table>

CHAPTER 3

3.1 INTRODUCTION
3.2 GUIDELINES FOR MODELLING
 3.2.1 Geotechnical failure modes 158
 3.2.2 Relevant phenomena 161
 3.2.3 Framework of analysis 162

3.3 SOIL INVESTIGATIONS AND SOIL PARAMETERS 163
 3.3.1 Strategy for soil investigations 163
 3.3.2 Seismic profiling 164
 3.3.3 Interpretation of CPTU tests 164
 3.3.4 Borings, soil sampling and sample testing 167
 3.3.4.1 Borings and soil sampling 167
 3.3.4.2 Soil classification from soil samples 167
 3.3.4.3 Specific tests on soil samples 167
 3.3.5 Character of soil parameters 168
 3.3.5.1 Relationship between soil investigations and soil parameters 168
 3.3.5.2 Soil types 168
 3.3.5.3 Importance of density, stress level and stress history 168
 3.3.6 Permeability 169
 3.3.7 Stiffness 170
 3.3.7.1 Virgin loading 170
 3.3.7.2 Unloading/reloading: elastic parameters 170
 3.3.8 Strength 171
 3.3.8.1 Non-cohesive soils 171
 3.3.8.2 Cohesive soils 172

3.4 DYNAMICS 173
 3.4.1 Concept of equivalent stationary load 173
 3.4.2 Basic assumptions of mass-spring(-dashpot) model 175
 3.4.3 Prediction of natural periods 178
 3.4.4 Prediction of dynamic response factor 181
 3.4.5 Inertia with plastic deformation 183

3.5 INSTANTANEOUS PORE PRESSURES AND UPLIFT FORCES 184
 3.5.1 Relevant phenomena 184
 3.5.2 Quasi-stationary flow in the rubble foundation 185
 3.5.3 Uplift force, downward force and seepage force in rubble foundation 187
 3.5.4 Non-stationary flow in rubble foundation 188
 3.5.5 Instantaneous pore pressures in sandy or silty subsoil 190
 3.5.5.1 Relevance of drainage distance 190
 3.5.5.2 Drained region 190
 3.5.5.3 Undrained region 191

3.6 DEGRADATION AND RESIDUAL PORE PRESSURES 193
3.6.1 Relevant phenomena in subsoil
3.6.2 Sandy subsoils
3.6.3 Clayey subsoils

3.7 LIMIT STATE EQUATIONS AND OTHER CALCULATION METHODS FOR STABILITY AND DEFORMATION
3.7.1 Schematisation of loads during wave crest
3.7.2 Limit state equations for main failure (sub)modes during wave crest
3.7.3 Seaward failure during wave trough
3.7.4 More sophisticated methods
 3.7.4.1 More sophisticated limit state equations
 3.7.4.2 Sliding circle analysis according to Bishop
 3.7.4.3 Finite element models
 3.7.4.4 Centrifuge model tests
 3.7.4.5 Analysis of unacceptable deformation after several load cycles
3.7.5 Three-dimensional rupture surfaces

3.8 UNCERTAINTIES
3.8.1 Survey of uncertainties
3.8.2 Uncertainties about soil parameters
3.8.3 Model uncertainties

3.9 INFLUENCE OF DESIGN PARAMETERS
3.9.1 General
3.9.2 Vertical breakwater on thin bedding layer and coarse grained subsoil with pulsating wave loads
 3.9.2.1 Input, analysis and output of performed investigation
 3.9.2.2 Less relevant load-case/failure-mode combinations
 3.9.2.3 Important load-case/failure-mode combinations
3.9.3 Effects with other breakwater types
 3.9.3.1 Effect of a high rubble foundation
 3.9.3.2 The effect of wave impacts
 3.9.3.3 The effect of fine grained subsoil

3.10 POSSIBILITIES FOR DESIGN IMPROVEMENTS
3.10.1 Variation of design parameters if rubble foundation is present
 3.10.1.1 Increase the mass of the wall
 3.10.1.2 Increase or decrease weight eccentricity e_c
 3.10.1.3 Reduction of wall volume below still water level
 3.10.1.4 Enlargement of B_c
 3.10.1.5 Enlarging the rubble foundation
 3.10.1.6 Connecting caissons to each other
 3.10.1.7 Soil replacement or soil improvement
3.10.1.8 Prolongation of seepage path in rubble foundation 217
3.10.2 Caisson foundation directly on sand 218
3.10.3 Skirts to improve foundation capacity in clayey soils 218

CHAPTER 4 225

4.1 INTRODUCTION 225
4.1.1 Background 225
4.1.2 Design sequence 226

4.2 GENERIC TYPES OF REINFORCED CONCRETE CAISSONS 227
4.2.1 Planar rectangular multi-celled caissons 227
4.2.2 Perforated rectangular multi-celled caissons 228
4.2.3 Circular-fronted caissons 228
4.2.4 Alternative designs 229

4.3 LOADS ACTING ON THE CAISSON 229

4.4 GEOMECHANICAL FACTORS RELEVANT TO THE STRUCTURAL RESPONSE 229
4.4.1 Characteristics of the ballast fill in caisson cells 230
4.4.2 Characteristics of rubble foundation and sub-soil 230
4.4.3 Unevenness of the foundation 231

4.5 HYDRAULIC DATA REQUIRED TO DESIGN A REINFORCED CONCRETE CAISSON 231
4.5.1 Pressure distribution on front face 231
4.5.2 Uplift pressure distribution on base slab 232
4.5.3 Over-pressure on top slab and super-structure 232

4.6 FAILURE MODES ASSOCIATED WITH PRE-SERVICE AND IN-SERVICE CONDITIONS 233
4.6.1 Pre-service states 233
4.6.2 In-service states 234

4.7 THE NEED FOR A NEW INTEGRATED DESIGN CODE 236
4.7.1 Design standards relevant to reinforced concrete caissons 236
4.7.2 Scope of selected codes 237
4.7.3 Comparisons between design codes 237
4.7.4 Suggested features for a possible new unified design code 239

4.8 SIMPLIFIED LIMIT STATE EQUATIONS 241
4.8.1 Identification of structural idealisations 241
4.8.1.1 Simplified beam and slab analogies and associated limit state equations 242
4.8.2 Limit state equations 245
4.8.2.1 ULS for flexural failure of a reinforced concrete member 245
4.8.2.2 ULS for shear failure of a reinforced concrete member 247
4.8.2.3 Cracking in a flexural reinforced concrete member 247
4.8.2.4 Chloride penetration and corrosion in reinforced concrete elements 247

4.9 UNCERTAINTIES ATTRIBUTED TO THE LS EQUATIONS:
MORE REFINED STRUCTURAL MODELS 248
4.9.1 Simple 3-degree-of-freedom dynamic model 248
4.9.2 Layered shell non-linear FE models 251
4.9.3 Full 3-dimensional continuum FE models 253
4.9.3.1 Dynamic fluid-soil-structure interaction 256
4.9.3.2 Modelling the dynamic far-field 257
4.9.3.3 Quantifying the uncertainties 257

4.10 CONSTRUCTION ISSUES 258

CHAPTER 5 261
5.1 INTRODUCTION 261
5.2 GENERAL INTRODUCTION OF PROBABILISTIC METHODS 262
5.2.1 Introduction 262
5.2.2 Limit state equations and uncertainties 262
5.2.2.1 The concept of limit states 262
5.2.2.2 Uncertainties related to the limit state formulation 264
5.2.3 Reliability analysis on level II and III 265
5.2.3.1 Introduction 265
5.2.3.2 Direct integration methods (Level III) 266
5.2.3.3 Approximating methods (Level II) 268
5.2.4 Fault tree analysis 271
5.2.4.1 General system analysis by fault tree 271
5.2.5 Calculation of system probability of failure 272
5.2.5.1 Introduction 272
5.2.5.2 Direct integration methods for systems 273
5.2.5.3 Approximating methods for systems 274
5.2.6 Choice of safety level 275
5.2.7 Reliability based design procedures 277
5.2.7.1 General formulation of reliability based optimal design 277
5.2.7.2 Cost optimisation 279
5.2.7.3 Partial Safety Factor System 284

5.3 PROBABILISTIC METHODS APPLIED TO VERTICAL BREAKWATERS IN GENERAL 290
5.3.1 Fault tree for a vertical breakwater 290
5.3.2 Specific limit states for vertical breakwaters 290
 5.3.2.1 Introduction 290
 5.3.2.2 Loading of the breakwater 292
 5.3.2.3 Serviceability limit states related to performance of the breakwater 292
 5.3.2.4 Foundation limit states 293
 5.3.2.5 Structural limit states 293

5.4 CASE STUDIES 294
5.4.1 General 294
5.4.2 Genoa Voltri (Italy) 294
 5.4.2.1 The case 294
 5.4.2.2 Wave forces 295
 5.4.2.3 Failure functions 296
 5.4.2.4 Variable statistics 297
 5.4.2.5 Model uncertainties 299
 5.4.2.6 System failure probability 301
 5.4.2.7 Sensitivity analysis 302
 5.4.2.8 Effect of breaking 303
 5.4.2.9 Conclusions 303
5.4.3 Easchel breakwater 303
 5.4.3.1 Introduction 303
 5.4.3.2 Breakwater geometry and boundary conditions 304
 5.4.3.3 Inshore wave climate 306
 5.4.3.4 Loading of the structure 306
 5.4.3.5 Influence of the breakwater geometry on the probability of caisson instability 307
 5.4.3.6 Comparison of model combinations for pulsating wave forces 309
 5.4.3.7 The influence of impact loading 310
5.4.4 Reliability analysis of geotechnical failure modes for the Mutsu-Ogawara West breakwater 311
 5.4.4.1 Introduction 311
 5.4.4.2 Stochastic models 312
 5.4.4.3 Reliability analysis 315

5.5 PERSPECTIVES 317
5.5.1 Durability 317
5.5.2 Impacts 317
5.5.3 Construction 317
5.5.4 Reflection 318
5.5.5 Shear keys 318
CHAPTER 6 321

6.1 HYDRAULIC ASPECTS 321
6.2 GEOTECHNICAL ASPECTS 323
6.3 STRUCTURAL ASPECTS 325
6.4 PROBABILISTIC ASPECTS 327

ANNEX 1 331

ANNEX 2 357

ANNEX 3 363

ANNEX 4 366