Bahram Amin

Induction Motors

Analysis and Torque Control

With 41 Figures
and 50 diagrams (simulation plots)
3.8.2 Torque

3.8.3 Order of Magnitude of Variables in a Current-Source Line-Fed Induction Motor

3.8.4 Current-Source Line-Fed Induction Motors at Start-Up

3.9 Negative-Sequence Applied Voltages

3.10 Induction Motors Fed from Unbalanced Voltage Source

3.11 Asymmetric Three-Phase Induction Motors in Steady-State Regimes

4 Steady-State Single-Phase Induction Motors

4.1 Introduction

4.2 Equations for Single-Phase Motors

4.3 Line-Fed Single-Phase Induction Motors

4.4 Equivalent Circuit

4.5 Determination of the Equivalent Circuit Parameters

5 Induction Motors in Transient Regimes

5.1 Introduction

5.2 Operating Equations in Transient Regimes

5.3 Transient Analysis in the Time Domain

5.4 Transient Analysis in the Frequency Domain

5.5 Examples of Simulation

5.5.1 Start-Up from Standstill
5.5.2 Take-Over of a De-Energized Motor105
5.5.3 Inverter-Fed Induction Motors with Frozen Power
Switches ...105

6 Inverter-Fed Induction Motors

6.1 Introduction ...109
6.2 Voltage-Source Inverters110
6.3 Natural Pulse Pattern of Inverters112
 6.3.1 Natural Pulse Pattern of a Two-Level Inverter112
 6.3.2 Natural Pulse Pattern of a Three-Level Inverter ...113
6.4 Scanning Modes ...115
 6.4.1 Periodic Scanning Modes - Output Waveforms115
6.5 Spectral Analysis of Periodic Waveforms - Total Harmonic
 Distortion ..117
6.6 Space Vector Modulation118
 6.6.1 Basic Idea ...118
 6.6.2 Uniform Waveforms Obtained Using Space Vector
 Modulation ...121
 6.6.3 Required Switching Frequency122
 6.6.4 Output Current Waveforms123
6.7 Voltage Space Vector Applied Across the Load124
 6.7.1 Y-Connected Load124
 6.7.2 Δ-Connected Load124
6.8 Harmonics ..125
6.9 Voltage Harmonics126
 6.9.1 Harmonic Components of Single-Pulse
 Waveforms ...126
 6.9.2 Harmonic Components of P-Pulse Waveforms128
 6.9.3 Harmonic Components of Uniform Waveforms130
 6.9.4 Harmonic Components of Quasi-Uniform
 Waveforms ...137
 6.9.5 Harmonic Components of Modulated Waveforms ..142
6.10 Current Harmonics148
 6.10.1 Current Harmonics in Various Load Phases148
 6.10.2 Current Harmonics of Input Lines149
6.11 Current-Source Inverters150

7 Induction Motors Torque Control

7.1 Introduction ...157
7.2 Vector Control ...158
7.2.1 Principle of the Computed Charge Acceleration Method (C.C.A.M) ... 159
7.2.2 Implementation of the C.C.A.M 162
7.2.3 Other Vector Control Approaches 168
7.2.4 Vector Control Simulation Results 170

7.3 Scalar Control .. 179
7.3.1 Scalar Control Principle 180
7.3.2 Scalar Control Operating Conditions 182
7.3.3 Scalar Control Simulation Results 190

7.4 Evaluation of the Stator and Rotor Resistance 198

7.5 Principle of Speed Calculation 202
7.6 Speed Regulation ... 203

Appendix A
Field-Oriented Control

A.1 Introduction .. 205
A.2 Preliminary Investigations 205
A.3 Field-Oriented Control ... 207

Appendix B
Direct Torque Control

B.1 Introduction .. 213
B.2 Direct Torque Control Principle 213

Appendix C
Double-Cage Induction Motors

C.1 Introduction .. 217
C.2 Voltage Equations in Double-Cage Induction Motors 217
C.3 General Equivalent Circuit of Double-Cage Induction Motors 219
C.4 Steady-State Equivalent Circuit of Double-Cage Induction Motors 222

Appendix D
Transient Analysis in Single-Phase Induction Motors

D.1 Introduction .. 225
D.2 Transients in Three-Phase Induction Motors 225
D.3 Transients in Single-Phase Induction Motors 227