Phage Display

Edited by

Tim Clackson
ARIAD Pharmaceuticals Inc.,
26 Landsdowne Street, Cambridge,
MA 02139, USA

Henry B. Lowman
Genentech Inc.,
1 DNA Way,
South San Francisco,
CA 94080, USA

OXFORD UNIVERSITY PRESS
Contents

Protocol list
List of abbreviations
List of contributors

Introduction to phage biology and phage display 1
Marjorie Russel, Henry B. Lowman, and Tim Clackson
1 Introduction 1
2 Biology of filamentous phage 2
 2.1 Introduction 2
 2.2 Structure of the phage particle 2
 2.3 Infection 5
 2.4 Replication 6
 2.5 Genes and gene expression 7
 2.6 Physiology of phage assembly 8
 2.7 The mechanics of phage assembly 9
3 Coat proteins used for display 10
 3.1 pVII 10
 3.2 pIII 11
4 Starting a phage display project 11
 4.1 Feasibility of display 11
 4.2 Phage or phagemid vector? 13
 4.3 Polyalent or monovalent display? 14
 4.4 Helper phage 15
 4.5 General protocols for phage preparation and quantitation 15
5 General principles of a phage display project 17
 5.1 Making a library 17
 5.2 Selection 19
 5.3 Analysis of clones 19
6 Common problems 20
 6.1 Library quality 20
 6.2 Expression editing 21
 6.3 Over-selection 21
Constructing phage display libraries by oligonucleotide-directed mutagenesis 27
Sachdev S. Sidhu and Gregory A. Weiss

1 Introduction 27

2 Considerations for library design 27
2.1 Site-directed mutagenesis 27
2.2 Degenerate codon design 27
2.3 Theoretical versus actual diversity 28

3 Oligonucleotide-directed mutagenesis 29
3.1 Oligonucleotide-directed mutagenesis versus cassette mutagenesis 29
3.2 The chemistry and biology of oligonucleotide-directed mutagenesis 29
3.3 Construction of an inactive template 31

4 Library construction and storage 31
4.1 Preparation of single-stranded DNA template 32
4.2 In vitro synthesis of heteroduplex CCC-dsDNA 34
4.3 E.coli electroporation and production of library phage 36
4.4 Library storage and reinfection 38

5 Biological reagents 39
References 41

In vitro DNA recombination 43
Kentaro Miyazaki and Frances H. Arnold

1 Introduction 43

2 Background to in vitro DNA recombination 43
2.1 Use of in vitro DNA recombination in directed evolution 43
2.2 Applications of in vitro DNA recombination 44
2.3 Recombination statistics 44

3 Methods for in vitro DNA recombination 45
3.1 Stemmer method 45
3.2 Random DNA fragmentation with endonuclease V from E. coli 47
3.3 Random priming recombination 49
3.4 Staggered Extension Process (StEP) 50
3.5 In vitro heteroduplex formation and in vivo repair (heteroduplex recombination) 52
3.6 Choice of recombination method 53
3.7 Removal of background 56
3.8 Technical tips 58
References 59
Phage selection strategies for improved affinity and specificity of proteins and peptides 61
Mark S. Dennis and Henry B. Lowman
1 Introduction 61
2 Vector considerations 63
 2.1 Monovalent and polyvalent phage display 63
 2.2 Confirming display 64
 2.3 Protein expression from phagemid vectors 64
 2.4 Vector construction and phagemid preparation 64
3 Library design 66
 3.1 Hard randomization 67
 3.2 Soft randomization 68
4 Target presentation 68
 4.1 Direct immobilization 68
 4.2 Solution binding 69
 4.3 Blocking 69
 4.4 Pilot selection 70
5 Selection 71
 5.1 Binding buffer considerations 72
 5.2 Stringency of selection 72
 5.3 Competitive selection 73
 5.4 Elution of bound phage 74
 5.5 Amplification 75
 5.6 Monitoring selection 77
6 Screening prior to analysis 79
7 DNA sequence analysis 80
 7.1 When to sequence 80
 7.2 Sequence consensus and sibs 80
 7.3 Evaluating the consensus 81
 7.4 Evaluation of phage clones 81
8 Troubleshooting 82
 References 82
Rapid screening of phage displayed protein binding affinities by phage ELISA 85
Warren L. DeLano and Brian C. Cunningham
1 Introduction 85
2 Parameters governing phage binding assays 86
3 Performing phage binding assays 88
 3.1 Preparation of phage samples 88
 3.2 Titration of target immobilization and phage addition 89
 3.3 Measurement of phagemid binding to target 91
 3.4 Fitting of displacement curves 92
4 Concluding remarks 94
 References 94
Contents

Identification of novel ligands for receptors using recombinant peptide libraries 95
Steven E. Cwirla, Christopher R. Wagstrom, Christian M. Gates, William J. Dower, and Peter J. Schatz

1 Introduction 95
2 Description of the peptide display systems 96
3 Constructing random peptide libraries in pVIII phagemid 98
4 Screening pVIII phagemid libraries 105
5 Characterization of recovered clones 108
6 Lead optimization strategies 110
7 Constructing secondary libraries in the "headpiece dimer" system 111
8 Affinity selection of headpiece dimer libraries 111
9 Transfer to MBP for analysis 115
10 Conclusions 115
References 116

Substrate phage display 117
David J. Matthews and Marcus D. Ballinger

1 Introduction 117
2 Preparation of substrate library constructs 118
 2.1 Choice of binding pair 120
 2.2 Design and construction of substrate cassettes 120
3 Substrate selection procedure 121
4 Characterization of selected sequences 125
 4.1 Initial sequence analysis 125
 4.2 "Expression editing" and other potential complications 125
 4.3 Detailed characterization of substrates 126
5 Variations and future directions 130
 5.1 Substrate subtraction libraries 130
 5.2 Substrate specificity of a peptide ligase 130
 5.3 Substrate specificity of protein kinases 131
 5.4 In vivo selection with retroviral display vectors 131
6 Conclusions 132
References 132

Protease-based selection of stably folded proteins and protein domains from phage display libraries 135
Mihriban Tuna, Michael D. Finucane, Natalie G. M. Vlachakis, and Derek N. Woolfson

1 Introduction 135
2 The methodology 135
CONTENTS

3 General procedures and a specific example—rescue of stable ubiquitin variants from a library of hydrophobic core mutants 138
 3.1 Construction of a phagemid library of hydrophobic core mutants 139
 3.2 Characterization of the phagemid library 145
 3.3 Protease selection of stably folded ubiquitin variants 145

4 Potential new applications for protease-based selection in phage display 152
 References 153

Phage display of zinc fingers and other nucleic acid-binding motifs 155
Mark Isalan and Yen Choo
1 Introduction 155
2 Preliminary considerations in creating a DNA-binding protein phage display library 155
 2.1 Is phage display appropriate? 155
 2.2 Is the DNA-binding mode of the protein understood? 156
 2.3 Which regions of the protein should be randomized? 157
 2.4 Polyvalent or monovalent display? 157
 2.5 Choice of protein scaffold and selection strategy 158
3 Constructing a phage library cassette 158
4 Phage vector preparation and library construction 161
5 Phage selections 164
6 Analysis of selected phage clones 164
 Acknowledgments 168
 References 168

In vivo and ex vivo selections using phage-displayed libraries 171
Jason A. Hoffman, Pirjo Laakkonen, Kimmo Porkka, Michele Bernasconi, and Erkki Ruoslahti
1 Introduction 171
2 In vivo and ex vivo phage display 171
3 Phage vectors 172
4 Control comparisons for in vivo and ex vivo phage display 172
5 The selection process 173
6 Identification of individual phage 181
 6.1 PCR and sequencing of the insert coding region 181
 6.2 Establishing that individual clones specifically bind organ or tissue vasculature 184
7 Concluding remarks 191
 Acknowledgments 191
 References 191
Screening phage libraries with sera 193
Paolo Monaci and Riccardo Cortese

1 Introduction 193

2 Construction of phage libraries 193
 2.1 Random peptide libraries 193
 2.2 Natural epitope libraries 194

3 Selection of phage-displayed peptides binding to serum antibodies 194

4 Selection strategies 201
 4.1 Serial selection 201
 4.2 Parallel selection 201

5 Screening individual clones 201
 5.1 Immuno-screening 201
 5.2 DNA-based screening 205

6 Characterization of selected clones 208
 6.1 ELISA 208
 6.2 Characterization of binding specificity by affinity purification 210
 6.3 Cross-inhibition assay 211
 6.4 DNA sequencing 214

7 Epitope maturation 216

Acknowledgment 220
References 220

Interaction cloning using cDNA libraries displayed on phage 223
Laurent Jespers and Marc Fransen

1 Introduction 223

2 Vectors for display of cDNA libraries on phage 224
 2.1 Filamentous bacteriophage 224
 2.2 Lytic bacteriophage 224

3 Cloning of cDNA libraries in gVI-based display vectors 225
 3.1 Description of the pG6 vectors 225
 3.2 Preparation of cDNA inserts from pre-made λGT11 libraries by PCR 225
 3.3 Ligation and transformation 229
 3.4 Evaluation and storage of the gVI-cDNA library 232

4 Affinity selection of gVI-cDNA fusion phage 232
 4.1 Rescue and purification of the phagemid libraries 232
 4.2 Preparation of biotinylated bait 234
 4.3 Panning procedure with biotinylated bait 234
 4.4 Immunoaffinity panning procedure 234

5 Analysis of selected clones 237
 5.1 Phage ELISA 238
 5.2 Sequence analysis and full-length cloning of the selected cDNAs 240
Phage antibody libraries 243
Andrew R. M. Bradbury and James D. Marks

1 Introduction 243
2 Phage antibody library construction 243
 2.1 The source of V-region diversity 247
 2.2 The source of natural V-genes 252
 2.3 Assembly and cloning of V-gene repertoires 256
3 Preparing phage antibodies for selection on antigen 266
4 Selecting antigen-specific antibodies from phage libraries 270
5 Identification and characterization of antigen-binding antibodies 275
6 Purification of soluble scFv fragments 283
7 Troubleshooting 283
 References 286

Affinity maturation of phage antibodies 289
Ulrik B. Nielsen and James D. Marks

1 Introduction 289
2 Where and how to diversify the antibody gene sequence 290
 2.1 Construction of scFv libraries with diversified CDR3s by
 site-directed mutagenesis 292
 2.2 Construction of chain shuffled libraries for affinity maturation 300
 2.3 Construction of light chain shuffled libraries 305
3 Selection and screening for higher affinity antibodies 309
4 Screening for scFv with improved off-rates 312
 References 314

Appendix
Non-standard suppliers 317

Index 323