Aircraft Systems

Mechanical, electrical, and avionics subsystems integration

Ian Moir
Allan Seabridge
Contents

Foreword from First Edition xiv
Foreword by Daniel P. Raymer xv
Acknowledgements xvi
Preface xvii
Acronyms and Abbreviations xix

Chapter 1 – Flight Control Systems 1
Introduction 1
Principles of flight control 3
Flight control surfaces 5
 Primary flight control 5
 Secondary flight control 6
 Commercial aircraft 6
 Secondary flight control 7
Flight control linkage systems 8
 Push-pull control rod system 8
 Cable and pulley system 10
High-lift control systems 13
Trim and feel 14
 Trim 14
 Feel 15
Power control units 17
 Simple mechanical actuation 17
 Mechanical actuation with electrical signalling 18
 Multiple redundancy actuation 19
Advanced actuation concepts 23
 Direct drive actuation 23
 Electromechanical actuator (EMA) 23
 Electrohydrostatic actuator (EHA) 24
Civil system implementations 24
 Top-level comparison 24
 Airbus implementation 25
 A320 FBW system 26
 A330/340 FBW system 27
 Boeing 777 implementation 28
 Inter-relationship of flight control, guidance and flight management 31
References 32
Chapter 2 – Engine Control Systems

Introduction
Engine control evolution
The control problem
Fuel flow control
Air flow control
Control systems
Control system parameters
Input signals
Output signals
Example systems
Design criteria
Engine starting
Fuel control
Ignition control
Engine rotation
Throttle levers
Starting sequence
Engine indications
Engine control on a modern civil aircraft
References

Chapter 3 – Fuel Systems

Introduction
Characteristics of aircraft fuel systems
Descriptions of fuel system components
Fuel transfer pumps
Fuel booster pumps
Fuel transfer valves
Non-return valves (NRVs)
Fuel quantity measurement
Level sensors
Fuel gauging probes
Fuel quantity measurement systems
DC Fuel gauging system examples – Fokker F50/F100 and Airbus
‘Smart’ probes
Ultrasonic probes
Fuel system operating modes
Fuel pressurization
Engine feed
Fuel transfer
Refuel/defuel
Vent systems
Use of fuel as a heat sink
External fuel tanks
Fuel jettison
In-flight refuelling
Integrated civil aircraft systems
References
Chapter 4 - Hydraulic Systems 91

Introduction 91
Circuit design 92
Actuation 94
Hydraulic fluid 96
 Fluid pressure 97
 Fluid temperature 97
 Fluid flow rate 97
Hydraulic piping 98
Hydraulic pump 98
Fluid conditioning 101
The reservoir 102
Warnings and status 102
Emergency power sources 103
Proof of design 103
Aircraft applications 105
 The BAE SYSTEM 146 family hydraulic system 105
Yellow system 106
 Yellow system stand-by AC pump 106
 Yellow system emergency 108
 Yellow system reservoir 108
 Engine-driven pump 108
Green system 109
 Green system stand-by PTU 109
 Green system stand-by AC/DC generator 109
 Green system reservoir 110
 Accumulator 110
 The BAE SYSTEMS Hawk 200 hydraulic system 110
 The Panavia Tornado hydraulic system 111
 Civil transport comparison 111
 Airbus A320 111
 Boeing 767 114
Landing-gear systems 116
 Nose gear 117
 Main gear 117
 Steering 119
Braking and anti-skid 119
 Electronic control 119
 Automatic braking 121
 Multi-wheel systems 123
References 124

Chapter 5 - Electrical Systems 125

Introduction 125
Aircraft electrical system characteristics 127
Power generation 128
 DC power generation 128
 AC power generation 128
 Power generation control 131
 DC system generation control 131
AC power generation control 133
Modern electrical power generation types 135
Primary power distribution 139
Power conversion and energy storage 140
Inverters 141
Transformer Rectifier Units (TRUs) 141
Auto-transformers 142
Battery chargers 142
Batteries 142
Secondary power distribution 143
Power switching 143
Load protection 143
Typical aircraft DC system 145
Typical civil transport aircraft system 146
Electrical loads 148
Motors and actuation 149
DC motors 149
AC motors 150
Lighting 150
Heating 151
Subsystem controllers and avionics systems 151
Ground power 151
Emergency power generation 152
Ram Air Turbine 153
Back-up converters 153
Permanent Magnet Generators (PMGs) 154
Recent systems developments 155
Electrical Load Management System (ELMS) 155
Variable Speed/Constant Frequency (VSCF) 158
Theory of VSCF cycloconverter system operation 158
Generator operation 158
Converter operation 160
270 VDC systems 163
More-electric Aircraft (MEA) 164
Electrical system displays 165
References 165

Chapter 6 – Pneumatic Systems 167
Introduction 167
Use of bleed air 168
Engine bleed air control 171
Bleed air system indications 173
Bleed air system users 175
Wing and engine anti-ice 175
Engine start 177
Thrust reversers 177
Hydraulic system 178
Pitot-static systems 179

Chapter 7 – Environmental Control Systems 183
Introduction 183
The need for a controlled environment for crew, passengers and equipment 183
<table>
<thead>
<tr>
<th>Chapter 9 – Helicopter Systems</th>
<th>231</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>231</td>
</tr>
<tr>
<td>Special requirements of helicopters</td>
<td>232</td>
</tr>
<tr>
<td>Principles of helicopter flight</td>
<td>233</td>
</tr>
<tr>
<td>Basic helicopter control</td>
<td>234</td>
</tr>
<tr>
<td>Key helicopter systems</td>
<td>236</td>
</tr>
<tr>
<td>Engine and transmission system</td>
<td>236</td>
</tr>
<tr>
<td>Hydraulic systems</td>
<td>238</td>
</tr>
<tr>
<td>Electrical system</td>
<td>241</td>
</tr>
<tr>
<td>Health monitoring system</td>
<td>241</td>
</tr>
<tr>
<td>Specialized helicopter systems</td>
<td>242</td>
</tr>
<tr>
<td>Helicopter flight control</td>
<td>244</td>
</tr>
<tr>
<td>EH 101 Merlin flight control system</td>
<td>244</td>
</tr>
<tr>
<td>NOTAR™ method of yaw control</td>
<td>246</td>
</tr>
<tr>
<td>Active control technology</td>
<td>249</td>
</tr>
<tr>
<td>Advanced battlefield helicopter</td>
<td>250</td>
</tr>
<tr>
<td>Target Acquisition and Designator System (TADS)/Pilots Night Vision System (PNVS)</td>
<td>250</td>
</tr>
<tr>
<td>AH-64 C/D Longbow Apache</td>
<td>253</td>
</tr>
<tr>
<td>References</td>
<td>256</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10 – Advanced Systems</th>
<th>257</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>257</td>
</tr>
<tr>
<td>Integrated flight and propulsion control</td>
<td>260</td>
</tr>
<tr>
<td>Vehicle management systems</td>
<td>262</td>
</tr>
<tr>
<td>All-electric aircraft concept</td>
<td>265</td>
</tr>
<tr>
<td>More-electric aircraft generation options</td>
<td>266</td>
</tr>
<tr>
<td>Integrated drive generator</td>
<td>266</td>
</tr>
<tr>
<td>Variable Speed Constant Frequency (VSCF) cycloconverter</td>
<td>266</td>
</tr>
<tr>
<td>VSCF DC link</td>
<td>267</td>
</tr>
<tr>
<td>Variable Frequency (VF)</td>
<td>267</td>
</tr>
<tr>
<td>270 VDC</td>
<td>267</td>
</tr>
<tr>
<td>230 VAC</td>
<td>268</td>
</tr>
<tr>
<td>Switched reluctance machines</td>
<td>268</td>
</tr>
<tr>
<td>MEA aircraft subsystem implications</td>
<td>268</td>
</tr>
<tr>
<td>V-22 tilt rotor system</td>
<td>270</td>
</tr>
<tr>
<td>Impact of stealth design</td>
<td>276</td>
</tr>
<tr>
<td>Lockheed F-117A stealth fighter</td>
<td>278</td>
</tr>
<tr>
<td>Northrop B-2 stealth bomber</td>
<td>279</td>
</tr>
<tr>
<td>Joint Strike Fighter (JSF)</td>
<td>281</td>
</tr>
<tr>
<td>Boeing X-32 configuration</td>
<td>283</td>
</tr>
<tr>
<td>Lockheed Martin X-35 configuration</td>
<td>283</td>
</tr>
<tr>
<td>Technology developments/demonstrators</td>
<td>284</td>
</tr>
<tr>
<td>Fault-tolerant 270 VDC electrical power generation system</td>
<td>284</td>
</tr>
<tr>
<td>Thermal and Energy Management Module</td>
<td>285</td>
</tr>
<tr>
<td>AFTI F-16 flight demonstration</td>
<td>286</td>
</tr>
<tr>
<td>Prognostics</td>
<td>286</td>
</tr>
<tr>
<td>References</td>
<td>287</td>
</tr>
</tbody>
</table>
Chapter 11 – Systems Design and Development

Introduction

Systems Design

Development processes

System design

Key agencies and documentation

Design guidelines and certification techniques

Major safety processes

Functional Hazard Analysis (FHA)

Preliminary System Safety Analysis (PSSA)

System Safety Analysis (SSA)

Common Cause Analysis (CCA)

Requirements capture

Top-down approach

Bottom-up approach

Requirements capture example

Fault tree analysis

Failure Modes and Effects Analysis (FMEA)

Component reliability

Dispatch reliability

Markov Analysis

Development processes

The produce life cycle

Concept phase

Definition phase

Design phase

Build phase

Test phase

Operate phase

Disposal or refurbish

Development programme

‘V’ diagram

References

Chapter 12 – Avionics Technology

Introduction

The nature of micro-electronic devices

ARINC 429 data bus

MIL-STD-1553B

ARINC 629 data bus

Data bus examples – integration of aircraft systems

Experimental Aircraft Programme (EAP)

Airbus A330/340

Boeing 777

Regional aircraft/business jets

Fibre-optics buses

Avionics packaging – Line Replaceable Units (LRUs)

Typical LRU architecture

Integrated modular avionics

References