Stability of Drugs and Dosage Forms

Sumie Yoshioka
National Institute of Health Sciences
Tokyo, Japan

and

Valentino J. Stella
The University of Kansas
Lawrence, Kansas

Kluwer Academic/Plenum Publishers
New York, Boston, Dordrecht, London, Moscow
Contents

1. Introduction ... 1

2. Chemical Stability of Drug Substances 3
 2.1. Pathways of Chemical Degradation 4
 2.1.1. Hydrolysis .. 5
 2.1.1.1. Esters .. 5
 2.1.1.2. Amides ... 10
 2.1.1.3. Barbiturates, Hydantoins, and Imides 12
 2.1.1.4. Schiff Base and Other Reactions Involving
 Carbon–Nitrogen Bond Cleavage 15
 2.1.1.5. Other Hydrolysis Reactions 17
 2.1.2. Dehydration ... 18
 2.1.3. Isomerization and Racemization 18
 2.1.4. Decarboxylation and Elimination 22
 2.1.5. Oxidation .. 24
 2.1.6. Photodegradation .. 28
 2.1.7. Drug–Excipient and Drug–Drug Interactions 29
 2.1.7.1. Reactions of Bisulfite, an Antioxidant 30
 2.1.7.2. Reaction of Amines with Reducing Sugars 30
 2.1.7.3. Transesterification Reactions 33
 2.2. Factors Affecting Chemical Stability 34
 2.2.1. Basic Kinetic Principles 34
 2.2.2. The Role of Molecular Structure 37
 2.2.3. Rate Equations and Kinetic Models 38
 2.2.3.1. Kinetic Models to Describe Drug Degradation
 in Solution ... 39
 2.2.3.2. Kinetic Models Describing Chemical Drug
 Degradation in the Solid State 52
 2.2.3.3. Calculation of Rate Constants by Fitting to Kinetic
 Models .. 61
 2.2.4. Temperature ... 61
 2.2.4.1. General Principles 61
2.2.4.2. Quantitation of the Temperature Dependency of Degradation Rate Constants .. 62
2.2.4.3. Stability in Frozen Solutions 78
2.2.5. pH and pH–Rate Profiles .. 80
 2.2.5.1. V-Type and U-Type pH–Rate Profiles 82
 2.2.5.2. pH–Rate Profiles with Inflection Points Due to the Presence of One or More Ionized Groups 84
 2.2.5.3. Bell-Shaped pH–Rate Profiles Due to Ionization of Multiple Groups or Change in Rate-Determining Steps 94
 2.2.5.4. Miscellaneous pH–Rate Profiles 96
2.2.6. Buffer, General Acid–Base, and Nucleophilic–Electrophilic Catalysis .. 97
2.2.7. Ionic Strength (Primary Salt Effects) 99
2.2.8. Dielectric Constant of Solvents 102
2.2.9. Oxygen ... 104
2.2.10. Light .. 106
2.2.11. Crystalline State and Polymorphism in Solid Drugs 107
2.2.12. Effect of Moisture and Humidity on Solid and Semisolid Drugs .. 108
2.2.13. Excipients ... 113
 2.2.13.1. Effect of the Amount of Moisture Present in Excipients .. 113
 2.2.13.2. Effect of the Physical State of Water Molecules in Excipients .. 115
 2.2.13.3. Effect of the Mobility of Water Molecules in Excipients on Drug Degradation 117
 2.2.13.4. Other Properties of Excipients 120
2.2.14. Miscellaneous Factors .. 124
2.3. Stabilization of Drug Substances against Chemical Degradation ... 125
 2.3.1. Stabilization by Modification of Molecular Structure of Drug Substances .. 125
 2.3.2. Stabilization by Complex Formation 126
 2.3.3. Stabilization by the Formation of Inclusion Complexes with Cyclodextrins .. 128
 2.3.4. Stabilization by Incorporation into Liposomes, Micelles, or Emulsions .. 133
 2.3.5. Addition of Stabilizers Such as Antioxidants and Stabilization through the Use of Packaging 135

3. Physical Stability of Drug Substances .. 139
 3.1. Physical Degradation .. 139
 3.1.1. Crystallization of Amorphous Drugs 139
 3.1.2. Transitions in Crystalline States 141
 3.1.3. Formation and Growth of Crystals 141
 3.1.4. Vapor-Phase Transfers Including Sublimation 143
3.1.5. Moisture Adsorption 143
3.2. Factors Affecting Physical Stability 144
3.3. Kinetics of Solid-Phase Transitions 145

4. Stability of Dosage Forms 151

4.1. Preformulation and Formulation Stability Studies . 151
 4.1.1. Methods for Detecting Chemical and Physical Degradation . 151
 4.1.1.1. Thermal Analysis 152
 4.1.1.2. Diffuse Reflectance Spectroscopy 155
 4.1.1.3. Miscellaneous Methods 156
 4.1.2. Factorial Analysis 157
4.2. Functional Changes in Dosage Forms with Time .. 159
 4.2.1. Changes in Mechanical Strength 159
 4.2.2. Changes in Drug Dissolution from Tablets and Capsules . 160
 4.2.2.1. Effect of Formulation on Changes in Dissolution . 160
 4.2.2.2. Changes in Drug Release from Coated Dosage Forms . 162
 4.2.2.3. Changes in Capsule Shells with Time and Storage Conditions 163
 4.2.2.4. Prediction of Changes in Dissolution 165
 4.2.3. Changes in Melting Time of Suppositories 167
 4.2.4. Changes in Drug Release Rate from Polymeric Matrix Dosage Forms, Including Microspheres . 168
 4.2.5. Drug Leakage from Liposomes 170
 4.2.6. Aggregation in Emulsions 172
 4.2.7. Moisture Adsorption 174
 4.2.8. Discoloration 175
4.3. Effect of Packaging on Stability of Drug Products . 175
 4.3.1. Moisture Penetration 175
 4.3.2. Adsorption onto and Absorption into Containers and Transfer of Container Components into Pharmaceuticals . 176
4.4. Estimation of the Shelf Life (Expiration Period) of Drug Products . 178
 4.4.1. Extrapolation from Real-Time Data 179
 4.4.2. Shelf-Life Estimation from Temperature-Accelerated Studies . 180
 4.4.2.1. Experimental Design of Accelerated Testing 180
 4.4.2.2. Estimation of Shelf Life Using Accelerated-Test Data at a Single Level of Temperature 182
 4.4.3. Estimation of Shelf Life under Temperature-Fluctuating Conditions 184

5. Stability of Peptide and Protein Pharmaceuticals 187

5.1. Degradation of Peptide and Protein Pharmaceuticals . 187
 5.1.1. Chemical Degradation 187
 5.1.1.1. Deamidation 188
 5.1.1.2. Isomerization and Racemization 189
5.1.1.3. Hydrolysis ... 190
5.1.1.4. Cross-Linking through Disulfide Bond Formation and Other Covalent Interactions 190
5.1.1.5. Oxidation ... 192
5.1.2. Physical Degradation 193
5.1.3. Degradation in Peptide and Protein Formulations .. 194
5.2. Factors Affecting the Degradation of Peptide and Protein Drugs ... 194
5.2.1. Moisture Content and Molecular Mobility 194
5.2.2. The Role of Excipients 196
5.3. Degradation Kinetics of Peptide and Protein Pharmaceuticals .. 197
5.3.1. Quantitative Description of Peptide and Protein Degradation .. 197
5.3.2. Temperature Dependence of the Degradation Rate of Peptide and Protein Drugs 199

6. Regulations ... 205
6.2. ICH Harmonised Tripartite Guideline for Photostability Testing of New Drug Substances and Products 217
6.3. Major Concerns Raised by the EU, the United States, and Japan at the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use 223
6.3.1. Storage Conditions for Stability Testing 223
6.3.2. Photostability Testing 223
6.3.3. Bracketing and Matrixing 224

References .. 227
Index .. 263