Plant Cell Biology
Second Edition

A Practical Approach

Edited by

Chris Hawes
Research School of Biological and Molecular Sciences, Oxford Brookes University, Oxford OX3 0BP, UK

and

Béatrice Satiat-Jeunemaitre
Institut des Sciences Végétales, CNRS UPR 40, 91198 Gif-sur-Yvette, France

OXFORD
UNIVERSITY PRESS
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of protocols</td>
<td>xv</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xix</td>
</tr>
<tr>
<td>1 Introduction to optical microscopy for plant cell biology</td>
<td>1</td>
</tr>
<tr>
<td>P. J. Shaw</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Explanation of terms</td>
<td>4</td>
</tr>
<tr>
<td>3 Recording images</td>
<td>7</td>
</tr>
<tr>
<td>Image resolution</td>
<td>7</td>
</tr>
<tr>
<td>Film recording</td>
<td>8</td>
</tr>
<tr>
<td>Electronic cameras</td>
<td>9</td>
</tr>
<tr>
<td>4 Microscope imaging modes</td>
<td>10</td>
</tr>
<tr>
<td>Bright field imaging</td>
<td>10</td>
</tr>
<tr>
<td>Phase contrast</td>
<td>12</td>
</tr>
<tr>
<td>Differential interference contrast (Nomarski)</td>
<td>14</td>
</tr>
<tr>
<td>Dark field</td>
<td>16</td>
</tr>
<tr>
<td>Epifluorescence and reflected light microscopy</td>
<td>17</td>
</tr>
<tr>
<td>5 Confocal and 3D microscopy</td>
<td>19</td>
</tr>
<tr>
<td>The problem of out-of-focus light</td>
<td>19</td>
</tr>
<tr>
<td>The confocal principle: explanation by ray optics</td>
<td>20</td>
</tr>
<tr>
<td>Practical confocal microscopes</td>
<td>21</td>
</tr>
<tr>
<td>Imaging and the point spread function</td>
<td>23</td>
</tr>
<tr>
<td>Deconvolution</td>
<td>24</td>
</tr>
<tr>
<td>Two photon imaging</td>
<td>26</td>
</tr>
<tr>
<td>6 Comparison of conventional, wide-field fluorescence imaging with confocal fluorescence imaging</td>
<td>27</td>
</tr>
<tr>
<td>Noise and resolution</td>
<td>27</td>
</tr>
<tr>
<td>When should confocal microscopy be used?</td>
<td>29</td>
</tr>
<tr>
<td>Objective lenses for confocal imaging</td>
<td>30</td>
</tr>
<tr>
<td>7 Specimen preparation for confocal imaging</td>
<td>30</td>
</tr>
<tr>
<td>References</td>
<td>33</td>
</tr>
<tr>
<td>2 Fluorescent probes for living plant cells</td>
<td>35</td>
</tr>
<tr>
<td>Mark Fricker, Andrew Parsons, Monika Tlalka, Elison Blancozflor, Simon Gilroy, Andreas Meyer, and Christoph Plith</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>35</td>
</tr>
</tbody>
</table>

vii
CONTENTS

2 Selecting probes with high brightness 35
 Spectral considerations 37
3 Fluorescence lifetime imaging microscopy (FLIM) 38
4 Fluorescence polarization anisotropy 38
5 Fluorescence resonance energy transfer (FRET) 38
6 Photobleaching and fluorescence redistribution after photobleaching (FRAP) 39
7 Optimization of fluorescent systems for live cell imaging 40
 Selection of the excitation wavelength 41
 The dichroic mirror 41
 Selection of the emission wavelength 41
 Choice of measurement system 42
8 Securing the specimen for microscopy 43
9 Perfusion systems 45
10 Loading strategies for plant cells 46
 Extracellular and permeant intracellular dyes 46
 Ester loading 47
 Low pH loading 48
 Cutinase pre-treatment and low pH loading 49
 Electroporation 50
 Loading via detergent permeabilization 50
 Loading tissues with phloem-mobile probes 50
11 Intracellular dye concentrations, viability, and toxicity 53
12 Selection and use of fluorescent probes 54
 Vital stains 55
 Mortal stains 56
 Cell permeant nuclear stains 57
 Chloroplasts 57
 Mitochondria 58
 Vacuoles 60
 Endoplasmic reticulum 62
 Golgi 62
 Cytoskeleton 63
 The plasma membrane and endocytosis 64
 The cell wall 65
13 Physiological probes 66
 Calcium 66
 Measurement of apoplastic, cytoplasmic, and vacuolar pH 72
 Potassium 76
 Aluminium 76
 Measurement of cytoplasmic glutathione levels 77
 Reactive oxygen species 77
14 Data analysis 78
 Attenuation correction for optical sections deep into tissues 80
 Acknowledgements 81
 References 81

3 Flow cytometry 85
 Teodoro Coba de la Peña and Spencer Brown
 1 Introduction 85

viii
2 Cytometry demonstrated through cell cycle analyses 86

How to understand monoparametric DNA histograms 87
Developing multiparametric DNA histograms and immunofluorescence 90
Extracting intact plant nuclei 91
Which DNA fluorochrome is appropriate? 94
Running and reading the cytometer 94
BrdU incorporation to identify DNA synthesis by fluorescence quenching 95

3 The particular application of genome size calculation and ‘DNA ploidy’ 99
Terminology 99
Internal or external standards 99
Calculating base composition 100

4 Sorting of protoplasts and cellular organelles 101

5 Tests for cell viability during functional assays 104

6 Conclusion 104
Acknowledgements 104
References 105

4 Transient expression, a tool to address questions in plant cell biology 107
Jane L. Hadlington and Jürgen Denecke

1 Introduction 107

2 Current methods of transient expression 108
Naked DNA transfer 108
Biological vectors 108

3 Application of transient expression 109
Promoter analysis 109
Cell biology and biochemistry 110

4 Practical considerations for cell biologists 111
Naked DNA transfer 112
Measurement of protein secretion and cell retention 116
Large scale transient expression for cell fractionation 118
Specialized applications 122

5 Conclusions 124
References 124

5 The green fluorescent protein (GFP) as reporter in plant cells 127
Jean-Marc Neuhaus and Petra Boevink

1 Introduction 127

2 The green fluorescent protein 127
Structure 127
GFP variants 128

3 GFP as a reporter for gene expression 128

4 GFP as a reporter for protein location 129
Cytoplasm and nucleus 129
Chloroplasts and mitochondria 130
Secretory pathway 130
Viral proteins 131
5 Transformation methods 131
PEG-mediated transient expression in protoplasts 131
Agrobacterium-mediated transient expression in planta 134
Virus-mediated transient expression 136
6 Visualization and microscopy of GFP 140
7 Future perspectives 141
References 141

6 Microinjection 143
Michael Knoblauch
1 Introduction 143
2 Equipment 143
 Environment and injection-table 143
 Microscope 144
 Objectives 144
 Glass capillaries 145
 Tip puller 145
 Micromanipulator 146
3 Injection techniques 146
 Iontophoresis 146
 Pressure injection 146
 The galinstan expansion femtosyringe (GEF) 147
4 Cell types 149
 Epidermal cells 149
 Guard cells and trichomes 150
 Mesophyll cells 150
 Ground parenchyma cells 151
 Sieve elements and companion cells 151
 Algae 152
 Bacteria and organelles 153
 Plant tissue cultures 153
5 Material suitable for injection 154
 Fluorochromes 154
 Dextran conjugates 154
 Proteins and antibodies 155
 Nucleic acids 155
6 Tips to make life easier 155
 The chuck 155
 Syringe to delete air bubbles 156
 Flexible fused silica capillaries 156
 Petri dishes 157
References 157

7 Micromanipulation by laser microbeam and optical tweezers 159
Karl Otto Greulich
1 Introduction 159
2 What are laser microtools? 159
CONTENTS

3 Physical background 160
 Generating extreme heat 160
 Why can light be used to move microscopic objects? 160

4 How to build laser microtools 161
 The choice of lasers 161
 Building a laser microbeam or optical tweezers 162

5 Applications of laser microbeams in plant biology 163
 Laser-induced microinjection 163
 Ablation to study cell fate during plant development 164
 Preparations of root hairs 165

6 Applications of optical tweezers to plant biology 166
 Capturing subcellular organelles for inspection 166
 Simulating microgravity 167

7 Conclusion 168
References 168

8 Electrophysiological methods: monitoring exo- and endocytosis in real time 171
Gerhard Thiel, Jens-Uwe Sutter, and Ulrike Homann

1 Introduction 171

2 Theoretical background 171
 The membrane is equivalent to a capacitor 171
 A cell as an equivalent circuit 172

3 Techniques for the measurement of membrane capacitance 172
 Square-wave stimulation: time-domain technique 173
 Saw-tooth stimulation 174
 Capacitance cancellation 174
 Sinusoidal excitation 174

4 Capacitance measurements as an assay for exo- and endocytosis: practical considerations 175
 What kind of cells can be examined? 176
 Estimation of the specific capacitance 176
 Recording of single fusion and fission events 176
 What kind of information can be extracted from the measurements? 179
 Macroscopic measurement of membrane capacitance 181

Acknowledgements 186
References 187

9 Plant histology 189
Jackie Spence

1 Introduction 189

2 Conventional chemical fixation methods 189

3 Conventional embedding methods and sectioning 191
 Embedding in a matrix 192
 Frozen sections 194
CONTENTS

4 Conventional staining methods 195
 General tissue stains 195
 Cell wall stains 197
 Carbohydrate and starch stains 200
 Lipid stains 201
 Nucleic acid stains 202
 Miscellaneous staining methods 203

References 206

10 Immunocytochemistry for light microscopy 207
 Béatrice Satiat-Jeunemaitre and Chris Hawes
 1 Introduction 207
 2 Principles and use of immunocytochemistry 208
 Direct and indirect immunostaining 208
 The antibody-antigen complex 208
 Whole molecules or fragments 209
 Polyclonal and monoclonal antibodies 211
 When to perform in situ immunoreaction 214
 Antibodies to epitope tags 215
 3 Basic methods for immunostaining 215
 Preparing plant material 216
 Attaching material to slides and coverslips 220
 Accessing epitopes in cells 220
 Counterstaining and mounting 230
 Interpreting the immunostaining pattern 230
 4 Multiple staining 231
 Multiple immunostaining 231
 Combining immunostaining with other affinity techniques 231
 5 Conclusion 232
 References 232

11 Electron microscopy 235
 Chris Hawes and Béatrice Satiat-Jeunemaitre
 1 Introduction 235
 2 Transmission electron microscopy 235
 Conventional methods 235
 Low temperature methods 250
 Rotary shadowing of proteins 257
 3 Scanning electron microscopy 258
 Ambient temperature SEM 258
 Low temperature SEM 262
 Immuno-SEM 263
 Acknowledgements 263
 References 264

12 In situ hybridization 267
 A. R. Leitch, K. Y. Lim, D. R. Webb, and G. I. McFudden
 1 Introduction 267

xii
CONTENTS

2 Applications of *in situ* hybridization 269
 DNA:DNA *in situ* hybridization 269
 RNA:RNA *in situ* hybridization 269

3 Background to the methods 269

4 Chromosome preparation for DNA:DNA *in situ* hybridization 270
 Animal material 270
 Plant material 271

5 Material preparation for RNA:RNA *in situ* hybridization 273
 Specimen preparation 273
 Controls 275

6 Labelling the nucleic acids 276
 DNA labelling 276
 Checking probe incorporation 282

7 Material pre-treatment 283
 Pre-treatment for DNA:DNA *in situ* hybridization 283
 Pre-treatment for RNA:RNA *in situ* hybridization 284

8 *In situ* hybridization reaction 285
 DNA:DNA *in situ* hybridization 285
 RNA:RNA *in situ* hybridization 286

9 Post-hybridization washes 287
 Washes for DNA:DNA *in situ* hybridization 288
 Washes for RNA:RNA *in situ* hybridization 288

10 Probe detection and visualization 289

11 Visualization 290
 Epifluorescence microscopy 290
 Image capture 291
 Image manipulation 292

References 292

13 **Organelle isolation** 295
 David G. Robinson and Giselbert Hinz

1 Introduction 295

2 General methodology 295
 Homogenizing media 295
 Methods of homogenization 298
 Methods of organelle separation 299

3 Isolation of chloroplasts 300

4 Isolation of mitochondria 300

5 Isolation of nuclei 301

6 Isolation of microbodies 303

7 Isolation of plasma membrane 304

8 Isolation of tonoplast 306

9 Isolation of endoplasmic reticulum 308

10 Isolation of Golgi apparatus 310

11 Isolation of transport vesicles 312
CONTENTS

12 Assays for marker enzymes 315
13 Antibodies for organelle recognition 319
 References 320

A1 List of suppliers 325

Index 333