HIV RNA Packaging and Lentivirus-Based Vectors
Andrew M. L. Lever

I. Introduction 1
II. HIV RNA Packaging 2
 A. HIV RNA Species 2
 B. Proteins Involved in RNA Capture 3
 C. RNA Packaging Signals in HIV-1 4
 D. RNA Dimerization and Packaging 8
 E. Accessory Packaging Signals 9
 F. HIV-2 Packaging Signals 10
 G. Packaging versus Translation 10
 H. Lentiviral Vectors 11
III. Summary 21
 References 22
Multiple Biological Roles Associated with the Repeat (R) Region of the HIV-1 RNA Genome

Ben Berkhout

I. Introduction 29
II. Transcription 34
III. Polyadenylation 37
 A. Repression of the 5' PolyA Site 42
 B. Activation of the 3' PolyA Site 43
 C. RNA Structure in the PolyA Site of Other Retroviruses 45
IV. mRNA Translation 48
V. RNA Dimerization/Packaging 49
VI. Reverse Transcription 51
 A. Initiation of Reverse Transcription 51
 B. Elongation of Reverse Transcription 53
 C. Strand-Transfer during Reverse Transcription 55
VII. Perspective and Future Directions 61
References 63

HIV Accessory Proteins: Multifunctional Components of a Complex System

Stephan Bour and Klaus Strebel

I. Introduction 75
II. Vif: A Potent Regulator of Viral Infectivity 77
III. Functional Domains in Vif 78
IV. Vif Associates with the Cytoskeleton 80
V. Vif as a Possible Regulator of Gag/Pol Polyprotein Processing 81
VI. Virion-Associated Vif May Have a Crucial Role in Regulating Viral Infectivity 81
VII. Vpr and Vpx 83
VIII. Vpr as a Transcriptional Activator 85
IX. Vpr as a Coactivator of the Glucocorticoid Receptor 85
X. Vpr-Induced Cell-Cycle Arrest 86
XI. Nuclear Import 87
XII. The Multifunctional Nef Protein 88
XIII. Downregulation of Cell-Surface CD4 89
XIV. Downregulation of MHC Class I 94
XV. Enhancement of Viral Infectivity 95
XVI. Acceleration of Disease Progression 96
XVII. HIV-1-Specific Vpu Protein 99
Role of Chromatin in HIV-1 Transcriptional Regulation
Carine Van Lint

I. Introduction 121
II. HIV-1 Transcriptional Regulatory Elements 122
III. Chromatin Is an Integral Component of the Transcriptional Regulatory Apparatus 125
IV. HIV-1 Retroviral Integration and Chromatin 128
V. DNase I-Hypersensitive Sites in the HIV-1 Genome 130
VI. Nucleosomes Are Precisely Positioned in the 5' LTR 131
VII. Disruption of a Single Nucleosome at the Transcription Start Site during HIV-1 Transcriptional Activation 133
VIII. Two Novel Regulatory Regions Are Associated with DNase I-Hypersensitive Sites in the HIV-1 Provirus 136
A. Characterization of the DNase I-Hypersensitive Site HS4 Associated with the 5' Untranslated Leader Region of HIV-1 136
B. Characterization of the DNase I-Hypersensitive Site HS7 Associated with the HIV-1 pol Gene 138
IX. Role of Histone Acetylation/Deacetylation in HIV-1 Transcriptional Regulation 141
X. Role of Tat in HIV-1 Promoter Chromatin Remodeling and Transcriptional Activation 143
XI. Study of HIV-1 Transcription using in vitro Chromatin-Reconstituted Templates 146
XII. Conclusions 148
References 150

NF-κB and HIV: Linking Viral and Immune Activation
Arnold B. Rabson and Hsin-Ching Lin

I. Introduction 161
II. Historical Perspectives 162
III. The NF-κB/Rel Transcription Factors 163
A. Structure of the NF-κB/Rel Proteins 163
B. IκB Proteins 167
C. Regulation of NF-κB Activity 167
IV. NF-κB and the Regulation of HIV Transcription 171
A. Conservation of NF-κB Binding Sites in Primate Lentiviral LTR-Enhancers 171
B. Additional NF-κB Binding Sites in HIV Proviruses 173
C. NF-κB Activation of HIV LTR Transcription 173

V. Other Roles for NF-κB in HIV Infection 180
A. Activation of NF-κB by HIV Infection 180
B. NF-κB-Independent Effects of IκB on HIV Infection 181

VI. NF-κB and HIV Replication 182
VII. NF-κB and HIV Pathogenesis 187
VIII. Therapeutic Modulation of NF-κB: A Role in HIV Therapy? 191
IX. Conclusions 194
References 195

Tat as a Transcriptional Activator and a Potential Therapeutic Target for HIV-1
Anne Gatignol and Kuan-Teh Jeang

I. Mechanisms of Tat-Mediated Trans-Activation 209
A. Tat Protein 209
B. Tat Mechanism on Transcriptional Initiation and Elongation 211

II. Cellular Cofactors for Trans-Activation 212
A. Histone Acetyl Transferases 213
B. Kinases and Cyclin T 215
C. TRBP (TAR RNA Binding Protein) 216
D. Other Positive Effectors for Tat Activity 217

III. Therapeutic Anti-Tat Strategies 217
A. Tat Is Essential for HIV Replication 217
B. Anti-Tat Compounds 218
C. Future Approaches 219
References 219

From the Outside In: Extracellular Activities of HIV Tat
Douglas Noonan and Adriana Albini

I. Introduction 229
A. Tat: On the Way Out 230
B. Tat: On the Way Back In 232

II. Tat and Angiogenesis—The Kaposi Connection 233
A. Tat and Integrins 234
B. Tat-Heparin Interactions—A Biological Role? 235
C. Tat and Tyrosine Kinase Receptors 236
D. Tat and Kaposi's Sarcoma—Cause or Complication? 237

III. Tat and Immunosuppression 237
A. T-Cell Anergy in AIDS 238
B. T-Cell Apoptosis Induced by Tat 238
C. Tat and HIV Infection 239

IV. Tat as a Cytokine 240
A. Pleiotropic Effects on Accessory Cells 240
B. Tat, Dementia, and the Central Nervous System 242
C. Tat Induction of Signal Cascades 243

References 243

Rev Protein and Its Cellular Partners
Jørgen Kjems and Peter Askjaer

I. Introduction 251
II. Characteristics of the Rev Protein 255
A. Functional Domains 255
B. Rev Structure 257
C. Rev Multimerization 258
D. Rev Phosphorylation 259
E. Rev Localization 260

III. Rev and Nuclear Export Factors 260
A. Characterization of the Rev Nuclear Export Signal 260
B. Nuclear Export Receptor CRM1/Exportin 1 262
C. RanGTPase Cycle 266
D. Rev and Nucleoporins 268
E. Common Pathways in Rev-Mediated and Cellular Export 270
F. Cellular mRNA Processing and Export 271
G. Eukaryotic Initiation Factor 5A 273

IV. Rev and Nuclear Import Factors 274
A. Docking Process 274
B. Translocation and Release 275
C. B23 275
D. Coordination of Factors Interacting with the Basic Region 276
E. Cytoplasmic Retention of Rev 277

V. Rev and RNA Splicing Factors 277

VI. Rev Targeted Therapy 279
A. Trans-Dominant Rev Proteins 280
B. Intracellular Antibodies (Intrabodies) 281
HIV-1 Nef: A Critical Factor in Viral-Induced Pathogenesis
A. L. Greenway, G. Holloway, and D. A. McPhee

I. Introduction 299
II. Historical Background of Nef Involvement in Pathogenesis 301
 A. Animal Models 301
 B. Natural Infection 302
III. Nef Structure 303
 A. Gene Loci 303
 B. Nucleotide and Amino Acid Sequence Conservation 304
 C. Characteristics of Nef Sequences 304
 D. Expression and Subcellular Localization of Nef 306
IV. Nef Function(s) 309
 A. Nef-Induced Down-Regulation of Cell-Surface Molecules 309
 B. Nef Control of Signal Transduction Events in HIV-1 Susceptible Cell Types 314
 C. Nef and Virus Replication 325
V. Conclusions and Discussion 331
References 332

Nucleocapsid Protein of Human Immunodeficiency Virus as a Model Protein with Chaperoning Functions and as a Target for Antiviral Drugs
Jean-Luc Darlix, Gaël Cristofari, Michael Rau, Christine Péchoux, Lionel Berthoux, and Bernard Roques

I. The Nucleocore 345
II. Nucleic Acid Chaperoning Activities of Nucleocapsid Protein during Proviral DNA Synthesis 350
III. Nucleocapsid Protein and Virion Core Assembly 354
IV. Phylogenetic Relationships between HIV-1 NCP7 and Nucleocapsid Protein of Other Retroviruses 357
V. NCP7 as a Target for Anti-HIV Inhibitors 361
VI. Future Prospects 363
References 364
Bioactive CD4 Ligands as Pre- and/or Postbinding Inhibitors of HIV-1
Laurence Briant and Christian Devaux

I. Introducing the CD4 Molecule 373
II. Ligands of CD4 376
 A. Natural Ligands of CD4 Extracellular Domains 376
 B. Viral Components That Bind CD4 Extracellular Domains 378
 C. The Cellular Partner and Viral Molecules That Bind the CD4 Intracytoplasmic Domain 379
III. Dissection of CD4 Structure–Function Relationship by Mean of Antibodies and Synthetic Peptides 381
 A. Anti-CD4 mAbs 381
 B. CD4-Binding Peptides 385
 C. CD4-Derived Peptides 386
 D. CD4[CDR3] Peptides Have Potential Therapeutic Utility 387
 E. Mechanism(s) of HIV Inhibition by CDR3-Loop Ligands 389
IV. Which Conclusions Can Be Drawn about the Function of CDR3-Loop Ligands? 391
 A. CDR3-Loop Ligands Inhibit T-Cell Signaling and HIV-1 Promoter Activation 391
 B. Functional Similarities between CDR3-Loop Ligands and IL-16 394
V. Trials of Anti-CD4 mAbs for Treatment of HIV-Infected Patients 395
 A. Trials of Anti-CD4 mAbs to Autoimmunity and Transplantation 395
 B. Trials of Anti-CD4 mAbs for Treatment of HIV Infected Patients 395
VI. Trials of CD4-Interacting Peptides in Human Therapy 396
VII. Future Developments of CDR3-Loop Ligands 397
References 397

Coreceptors for Human Immunodeficiency Virus and Simian Immunodeficiency Virus
Keith W. C. Peden and Joshua M. Farber

I. Introduction 409
II. Cellular Tropism of HIV and SIV 410
 A. HIV Strains Have Different Tropisms 410
 B. Viral Determinants of Tropism 411