CONTENTS

PREFACE .. ix

New Functions from Old Scaffolds: How Nature Reengineers Enzymes for New Functions

PATRICIA C. BABBITT AND JOHN A. GERLT

I. Introduction ... 1
II. Defining Protein Superfamilies 3
IV. Studies of Other Superfamilies and Fold Classes . 21
V. Conclusions .. 26
VI. References .. 26

Evolution of Protein Function by Domain Swapping

MARC OSTERMEIER AND STEPHEN J. BENKOVIC

I. Introduction ... 29
II. Terminology .. 30
III. Evolution of Proteins in Nature by Domain Swapping 31
IV. Domain Swapping for Protein Engineering 43
V. Methodologies .. 59
VI. Perspective .. 67
References .. 68
Rational Evolutionary Design:
The Theory of In Vitro Protein Evolution

CHRISTOPHER A. VOIGT, STUART KAUFFMAN, AND ZHEN-GANG WANG

I. Introduction 79
II. Sequence Space and Fitness Landscapes 81
III. Modeling Directed Evolution 97
IV. Rational Evolutionary Design 138
V. Summary and Conclusions 152
References 154

Temperature Adaptation of Enzymes:
Lessons from Laboratory Evolution

PATRICK L. WINTRODE AND FRANCES H. ARNOLD

I. Introduction 161
II. Influence of Temperature on Enzymes 164
III. Studies of Natural Extremophilic Enzymes 167
IV. Directed Evolution 173
V. Stability, Flexibility, and Catalytic Activity 208
VI. Why Are Proteins Marginally Stable? 216
VII. Why Are Thermophilic Enzymes Poorly Active at Low Temperature? 218
VIII. Conclusions 219
References 221

Structural Analysis of Affinity Matured Antibodies
and Laboratory-Evolved Enzymes

M. CECILIA ORENCIA, MICHAEL A. HANSON,
AND RAYMOND C. STEVENS

I. Introduction 227
II. Structural Studies of Antibody Affinity Maturation 228
III. Structural Studies of Enzyme Directed Evolution 244
IV. Conclusions 254
References 257
Molecular Breeding: The Natural Approach to Protein Design

JON E. NESS, STEPHEN B. DEL CARDAYRÉ, JEREMY MINSHULL, AND WILLEM P. C. STEMMER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>261</td>
</tr>
<tr>
<td>II. The Need for Better Proteins</td>
<td>263</td>
</tr>
<tr>
<td>III. Strategies for Optimizing Proteins</td>
<td>264</td>
</tr>
<tr>
<td>IV. Screening Is Key</td>
<td>277</td>
</tr>
<tr>
<td>V. Beyond Proteins</td>
<td>281</td>
</tr>
<tr>
<td>VI. Concluding Remarks</td>
<td>285</td>
</tr>
</tbody>
</table>

References | 286 |

Analysis of Large Libraries of Protein Mutants Using Flow Cytometry

GEORGE GEORGIOU

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>293</td>
</tr>
<tr>
<td>II. Library Screening Technologies</td>
<td>294</td>
</tr>
<tr>
<td>III. Cell Surface Display Technologies</td>
<td>301</td>
</tr>
<tr>
<td>IV. Library Screening by Flow Cytometry</td>
<td>303</td>
</tr>
<tr>
<td>V. Concluding Remarks</td>
<td>311</td>
</tr>
</tbody>
</table>

References | 311 |

From Catalytic Asymmetric Synthesis to the Transcriptional Regulation of Genes: In Vivo and In Vitro Evolution of Proteins

CARLOS F. BARBAS III, CHRISTOPH RADER, DAVID J. SEGAL, BENJAMIN LIST, AND JAMES M. TURNER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction and Scope of Review</td>
<td>317</td>
</tr>
<tr>
<td>II. Selecting and Evolving Therapeutic Human Antibodies</td>
<td>318</td>
</tr>
<tr>
<td>III. Directing Evolution at the Level of Chemical Mechanism: Aldolase Antibodies and Asymmetric Catalysis</td>
<td>331</td>
</tr>
<tr>
<td>IV. Multiple Hapten Selection: Refining the Active Site of a Catalytic Antibody by In Vitro Selection</td>
<td>349</td>
</tr>
<tr>
<td>V. Selection and Evolution of Novel DNA-Binding Proteins: From Principles to Applications</td>
<td>350</td>
</tr>
</tbody>
</table>

References | 363 |