Handbook of Pharmaceutical Controlled Release Technology

executive editor
Donald L. Wise
Cambridge Scientific, Inc.
Cambridge, Massachusetts

associate editors
Lisa Brannon-Peppas
Biogel Technology, Inc.
Indianapolis, Indiana
Alexander M. Klibanov
Robert S. Langer
Massachusetts Institute of Technology
Cambridge, Massachusetts
Antonios G. Mikos
Rice University
Houston, Texas
Nicholas A. Peppas
Purdue University
West Lafayette, Indiana
Debra J. Trantolo
Cambridge Scientific, Inc.
Cambridge, Massachusetts
Gary E. Wnek
Virginia Commonwealth University
Richmond, Virginia
Michael J. Yaszemski
Mayo Clinic
Rochester, Minnesota
Contents

Preface

Part I: Polymers as Drug Delivery Carriers

1. Hydrophilic Cellulose Derivatives as Drug Delivery Carriers: Influence of Substitution Type on the Properties of Compressed Matrix Tablets
 Carmen Ferrero Rodriguez, Nathalie Bruneau, Jérôme Barra, Dorothée Alfonso, and Eric Doelker

2. Poly(Vinyl Alcohol) as a Drug Delivery Carrier
 Surya K. Mallapragada and Shannon McCarthy-Schroeder

3. Development of Acrylate and Methacrylate Polymer Networks for Controlled Release by Photopolymerization Technology
 Robert Scott, Jennifer H. Ward, and Nicholas A. Peppas

4. Smart Polymers for Controlled Drug Delivery
 Joseph Kost and Smadar A. Lapidot

5. Complexing Polymers in Drug Delivery
 Anthony M. Lowman

6. Polylactic and Polyglycolic Acids as Drug Delivery Carriers
 Lisa Brannon-Peppas and Michel Vert

7. Use of Infrared and Raman Spectroscopy for Characterization of Controlled Release Systems
 A. B. Scranton, B. Drescher, E. W. Nelson, and J. L. Jacobs

8. Accurate Models in Controlled Drug Delivery Systems
 Balaji Narasimhan

Part II: Mechanism-Based Classification of Controlled Release Devices

9. Drug Release from Swelling-Controlled Systems
 Paolo Colombo, Patrizia Santi, Ruggero Bettini, Christopher S. Brazel, and Nicholas A. Peppas
10. Superporous Hydrogels as a Platform for Oral Controlled Drug Delivery
 Jun Chen, Haesun Park, and Kinam Park

11. Osmotic Implantable Delivery Systems
 Cynthia L. Stevenson, Felix Theeuwes, and Jeremy C. Wright

12. Bioadhesive Controlled Release Systems
 Nicholas A. Peppas, Monica D. Little, and Yanbin Huang

Part III: Micro- and Nanoparticulate Release Systems

13. Microencapsulation Technology: Interfacial Polymerization Method
 A. Atilla Hincal and H. Süheyla Kaş

14. Nanoparticulate Controlled Release Systems for Cancer Therapy
 C. Dubernet, E. Fattal, and P. Couvreur

15. Microencapsulation Using Coacervation/Phase Separation: An Overview
 of the Technique and Applications
 H. Süheyla Kaş and Levent Öner

16. Microsphere Preparation by Solvent Evaporation Method
 A. Atilla Hincal and Sema Çalış

17. Nanosuspensions: A Formulation Approach for Poorly Soluble
 and Poorly Bioavailable Drugs
 R. H. Müller, B. H. L. Böhm, and M. J. Grau

18. Large-Scale Production of Solid Lipid Nanoparticles (SLN) and Nanosuspensions (DissoCubes)
 R. H. Müller, A. Dingler, T. Schnepe, and S. Gohla

19. Solid Lipid Nanoparticles (SLN) as a Carrier System for the Controlled
 Release of Drugs
 R. H. Müller, A. Lippacher, and S. Gohla

 Steven P. Schwendeman, Anna Shenderova, Gaozhong Zhu, and Wenlei Jiang

21. Development of Polysaccharide Nanoparticles as Novel Drug Carrier Systems
 C. Vauthier and P. Couvreur

Part IV: Classification of Controlled Release Devices According to Administration Site

22. An Overview of Controlled Release Systems
 S. Venkatraman, N. Davar, A. Chester, and L. Kleiner
Chapter 23. Research and Development Aspects of Oral Controlled-Release Dosage Forms
Yihong Qiu and Guohua Zhang
Page 465

Y. Kawashima, H. Takeuchi, and H. Yamamoto
Page 505

Chapter 25. In Vitro–In Vivo Correlations in the Development of Solid Oral Controlled Release Dosage Forms
Yihong Qiu, Emil E. Samara, and Guoliang Cao
Page 527

Chapter 26. Gamma Scintigraphy in the Analysis of the Behavior of Controlled Release Systems
C. G. Wilson and N. Washington
Page 551

Chapter 27. Electrically Assisted Transdermal Delivery of Drugs
Ajay K. Banga
Page 567

Chapter 28. A Novel Method Based on Artificial Neural Networks for Optimizing Transdermal Drug Delivery Systems
Kozo Takayama and Tsuneji Nagai
Page 583

Chapter 29. Transdermal Drug Delivery by Skin Electroporation
Tani Chen, Robert Langer, and James C. Weaver
Page 597

Chapter 30. Enhancement of Transdermal Transport Using Ultrasound in Combination with Other Enhancers
Samir Mitragotri, Robert Langer, and Joseph Kost
Page 607

Chapter 31. Electrotransport Systems for Transdermal Delivery: A Practical Implementation of Iontophoresis
Erik R. Scott, J. Bradley Phipps, J. Richard Gyory, and Rama V. Padmanabhan
Page 617

Part V: Peptide and Protein Release Systems

Chapter 32. Controlled Release Protein Therapeutics: Effects of Process and Formulation on Stability
Paul A. Burke
Page 661

Chapter 33. Solid-State Chemical Stability of Peptides and Proteins: Application to Controlled Release Formulations
Elizabeth M. Topp, Yuan Song, Ashley Wilson, Rong Li, Michael J. Hageman, and Richard L. Schowen
Page 693

Chapter 34. Growth Factor Release from Biodegradable Hydrogels to Induce Neovascularization
Yoshito Ikada and Yasuhiko Tabata
Page 725
35. Biopolymers for Release of Interleukin-2 for Treatment of Cancer
Debra J. Trantolo, Joseph D. Gresser, A. Ganiyu Jimoh, Donald L. Wise, and James C. Yang

Part VI: Medical Applications of Drug Delivery

36. Osmotic Drug Delivery from Asymmetric Membrane Film-Coated Dosage Forms
Mary Tanya am Ende, Scott M. Herbig, Richard W. Korsmeyer, and Mark B. Chidlaw

37. Controlled Release Pain Management Systems
Vasif Hasirci, Dilek Sendil, Leonidas C. Goudas, Daniel B. Carr, and Donald L. Wise

38. Biodegradable Systems for Long-Acting Nestorone
Debra J. Trantolo, Donald L. Wise, A. J. Moo-Young, Yung-Yueh Hsu, and Joseph D. Gresser

39. Preparation and Evaluation of Buprenorphine Microspheres for Parenteral Administration
William R. Ravis, Yuh-Jing Lin, and Ram Murty

40. Prolonged Release of Hydromorphone from a Novel Poly(Lactic-co-Glycolic) Acid Depot System: Initial In Vitro and In Vivo Observations

41. Incorporation of an Active Agent into a Biodegradable Cement: Encapsulation of the Agent as Protection from Chemical Degradation During Cure and Effect on Release Profile
Joseph D. Gresser, Debra J. Trantolo, Puttisapu R. J. Gangadharam, Hisanori X. Nagaoka, Yung-Yueh Hsu, and Donald L. Wise

42. The Pharmacoeconomic Value of Controlled Release Dosage Forms
Laura B. Gardner

Index