CONTENTS

List of contributors xvi
Preface xvii

1 Physico-chemical properties of drugs and metabolites and their extraction from biological material 1
Hugh Wiltshire 1

1.1 Introduction 1
1.1.1 Metabolite isolation 1
1.1.2 Bioanalysis 1
1.1.3 Enrichment of drugs and metabolites 1
1.1.4 Differences between metabolite isolation and drug analysis 2

1.2 Physico-chemical properties of drugs and solvents 2
1.2.1 Energy changes on solution 2
1.2.2 Molecular phenomena behind solubility/miscibility 3
1.2.3 Water miscibility and water immiscibility 8

1.3 Partition 9
1.3.1 Extraction efficiency 9

1.4 Ionisation and its effect on the extraction of drugs 11
1.4.1 Ionisation, pH and pK 11
1.4.2 Titration curves 12
1.4.3 Henderson–Hasselbach equation 13
1.4.4 Buffers 16
1.4.5 Distribution coefficient 17

1.5 Solvent extraction 18
1.5.1 Choice of solvent 18
1.5.2 Mixed solvents 20
1.5.3 Dealing with plasma proteins and emulsions 21
1.5.4 Choice of pH for solvent extraction 21
1.5.5 Artefacts arising during the extraction of drugs and metabolites 21
1.5.6 Modification and derivatisation of drugs and metabolites 24
CONTENTS

4.12 Conclusions 104
4.13 Glossary 104
4.14 References 105

5 HPLC detectors
RICHARD F. VENN

5.1 Introduction 106
5.2 Principles of detection 107
 5.2.1 Solute-property detectors 107
 5.2.2 Bulk-property detectors 108
5.3 Selectivity in detectors 108
5.4 Detector response 109
 5.4.1 Linearity 109
 5.4.2 Time constant 110
5.5 Detector types 111
 5.5.1 UV–visible detectors 111
 5.5.2 Fluorescence detectors 115
 5.5.3 Electrochemical detectors 120
 5.5.4 Multifunctional detectors 122
 5.5.5 Radiochemical detectors 123
 5.5.6 Other detectors 124
5.6 Sensitivity considerations 126
 5.6.1 Irradiation 126
 5.6.2 Pre-column derivatisation 126
 5.6.3 Post-column derivatisation 127
5.7 Selectivity 127
5.8 Detector problems 128
 5.8.1 Noise due to bubbles 128
 5.8.2 Spurious peaks 128
 5.8.3 Baseline instability 128
5.9 Appendix 129
 5.9.1 Buying a detector 129
 5.9.2 Which detector to use? 129
5.10 Bibliography 129

6 Gas chromatography: what it is and how we use it
PETER ANDREW

6.1 Why gas chromatography works 131
6.2 Factors that affect the chromatography 132
6.3 Choices in GC 133
 6.3.1 Stationary phase 133
 6.3.2 Mobile phase 135
CONTENTS

6.3.3 Column length 136
6.3.4 Column diameter 136
6.3.5 Film thickness 136
6.3.6 Flow rate 137
6.3.7 Temperature 137
6.3.8 Some rules of thumb 138

6.4 GC hardware 138
6.4.1 Pneumatics 139
6.4.2 Sample introduction 140
6.4.3 Detectors 145

6.5 Derivatisation for GC 147

6.6 A GC strategy for bioanalysis 148

6.7 Bibliography 148

7 Thin-layer chromatography
HUGH WILTSHIRE

7.1 Introduction 149
7.2 Uses of TLC 150
7.2.1 Preparative TLC 150
7.2.2 Metabolic profiling 151
7.2.3 ‘Rules of thumb’ 155

7.3 Some recommended solvent systems 158
7.4 Detection of compounds on TLC plates 158
7.5 Bibliography 159

8 Capillary electrophoresis: an introduction
PETER ANDREW

8.1 Introduction 160
8.2 How capillary electrophoresis works 160
8.3 Why capillary electrophoresis works 162
8.3.1 Electro-osomotic flow 162
8.3.2 Free-solution capillary electrophoresis 162
8.3.3 Micellar electrokinetic capillary chromatography 164
8.3.4 Electrochromatography (electrically driven HPLC) 165

8.4 CE hardware 166
8.4.1 The capillary 166
8.4.2 Sample introduction 166
8.4.3 Detectors in CE 168
8.4.4 Sensitivity in CE 169

8.5 Use in bioanalysis 169
8.6 Bibliography 170
CONTENTS

9 Immunoassay techniques 171
RICHARD F. VENN

9.1 Introduction 171
9.2 Definitions 171
9.3 Theory 172
 9.3.1 Mass action 172
 9.3.2 Competitive assays 173
 9.3.3 Non-competitive assays 174
9.4 Requirements for immunoassay 175
 9.4.1 Antibody 175
 9.4.2 Label 175
 9.4.3 Separation 177
9.5 Practical aspects 178
 9.5.1 Preparation of hapten–carrier protein conjugates 178
 9.5.2 Immunisation 179
 9.5.3 Antibody detection 180
 9.5.4 Antibody titres 180
 9.5.5 Calibration curves 180
 9.5.6 Matrix effects 182
9.6 Data handling 182
 9.6.1 Standard curves 182
 9.6.2 Fitting 182
 9.6.3 Precision profile 182
9.7 Advantages of immunoassay 184
 9.7.1 Sensitivity 184
 9.7.2 Throughput 184
 9.7.3 Selectivity 184
 9.7.4 Ease 184
 9.7.5 Automation 184
9.8 Disadvantages of immunoassays 185
 9.8.1 Time: how long does it take? 185
 9.8.2 Selectivity 185
 9.8.3 Matrix effects 185
9.9 What can go wrong? 185
 9.9.1 Matrix effects 185
 9.9.2 Concentration effects 187
9.10 Immunoassay strategy 187
9.11 Example 187
 9.11.1 Sampatrilat 187
9.12 Affinity chromatography 187
 9.12.1 Immobilisation techniques and media 190
 9.12.2 Elution techniques 191
 9.12.3 Re-use/reconditioning 192
CONTENTS

9.12.4 The interface between affinity chromatography and analysis 193

9.13 The future 193

9.13.1 Phage libraries for antibodies 193
9.13.2 Monoclonal antibodies 193
9.13.3 Molecular imprinting 193
9.13.4 Non-competitive assays for small molecules 194
9.13.5 Use of low-specificity immunoassay for discovery compounds 194
9.13.6 Indwelling optical fibre probes 194

9.14 Summary 194
9.15 Bibliography 194

10 Automation of sample preparation 196

CHRIS JAMES

10.1 Introduction 196
10.2 Approaches to automation 197

10.2.1 SPE 197
10.2.2 Protein precipitation methods 198
10.2.3 Multi-well plate technology 198
10.2.4 Liquid-handling procedures 198
10.2.5 Avoiding evaporation 199

10.3 Simple automation 199
10.4 Column switching 200
10.5 Prospekt and Merck OSP-2 202

10.6 Benchtop instruments – sequential sample processing 202

10.6.1 Zymark BenchMate 203
10.6.2 Gilson ASPEC XL 203
10.6.3 Hamilton MicroLab 204

10.7 Benchtop instruments – parallel sample processing 205

10.7.1 Zymark RapidTrace 205
10.7.2 Gilson ASPEC 4 205
10.7.3 Multiple probe liquid-handling robots 205

10.8 Gilson ASTED 206
10.9 Full robotic systems 207
10.10 When to automate? 207
10.11 Example methods 208
10.12 Conclusions and future perspectives 208
10.13 Bibliography 209
11 Fundamental aspects of mass spectrometry: overview of terminology 211

MIRA V. DOIG

11.1 Introduction 211
11.2 Inlets 211
 11.2.1 Septum inlet 211
 11.2.2 Direct probe inlet 212
 11.2.3 GC inlets 212
 11.2.4 LC inlets 213

11.3 Ion sources 216
 11.3.1 Introduction 216
 11.3.2 Electron impact ionisation 216
 11.3.3 Chemical ionisation 218
 11.3.4 Atmospheric-pressure chemical ionisation 219
 11.3.5 Fast atom bombardment 220
 11.3.6 Thermospray 221
 11.3.7 Electrospray 223
 11.3.8 Other desorption techniques 225

11.4 Analysers 226
 11.4.1 Single-focusing magnetic instruments 226
 11.4.2 Double-focusing instruments 228
 11.4.3 Quadrupole analysers 229
 11.4.4 Time of flight (ToF) analysers 231
 11.4.5 Ion-trap mass analysers 231

11.5 Detectors 233
 11.5.1 Electron multipliers 233
 11.5.2 Negative-ion detection 234

11.6 Data acquisition and processing 234
 11.6.1 Instrument control 234
 11.6.2 Data acquisition/preliminary data processing 234
 11.6.3 Secondary data processing/data presentation 235

11.7 Bibliography 239

12 Applications of mass spectrometry: quantitative mass spectrometry 240

MIRA V. DOIG

12.1 Quantification 240
 12.1.1 Gas chromatography–mass spectrometry (GC–MS) 240
 12.1.2 Liquid chromatography–mass spectrometry (LC–MS) 241
 12.1.3 Quantitative API LC–MS and its contribution to the drug
development process 241

12.2 Internal standardisation 242

12.3 Data acquisition 243
 12.3.1 Selected ion versus mass chromatogram 243
 12.3.2 Mass analysis 243
CONTENTS

14.5 NMR applications in drug development 288
 14.5.1 No sample preparation 288
 14.5.2 Solid-phase extraction sample preparation 288
 14.5.3 HPLC fractions 291
 14.5.4 Fluorinated compounds 291
 14.5.5 Stable isotope labelling 293

14.6 Plasma metabolites 294

14.7 Biochemical changes 294

14.8 Summary 294

14.9 Appendix: fourier transform and some multi-pulse techniques 294
 14.9.1 Why use pulse NMR? 294
 14.9.2 The pulse 296
 14.9.3 Time and frequency 296
 14.9.4 Multi-pulse experiments 296
 14.9.5 Conclusion 301

14.10 Bibliography 301

15 Strategy in metabolite isolation and identification 302

HUGH WILTSHIRE

15.1 Stage 1: radiochemical synthesis 302
 15.1.1 Choice of label 302
 15.1.2 Position of 14C label 303

15.2 Stage 2: animal experiments 303
 15.2.1 Routes of excretion 304
 15.2.2 Formulation and route of administration 304
 15.2.3 Collection of urine and bile 304

15.3 Stage 3: metabolite isolation and characterisation 304
 15.3.1 Enrichment 304
 15.3.2 Analysis 306
 15.3.3 Separation 307
 15.3.4 Purification 315
 15.3.5 Characterisation 315

15.4 Stage 4: identification of metabolites 321
 15.4.1 Mass spectrometry 323
 15.4.2 NMR 325
 15.4.3 Degradation, derivatisation and comparison with authentic material 327
 15.4.4 Ambiguities 330

15.5 Stage 5: quantitative aspects of metabolism 330
 15.5.1 Quantification of excretion balance studies 330
 15.5.2 Quantitative aspects of metabolite isolation 331
 15.5.3 Quantitative measurement of metabolic profiles 331

xiv
CONTENTS

15.6 In vitro studies 333
 15.6.1 Isolation of metabolites from in vitro incubations 334
 15.6.2 Cross-species comparisons of metabolic profiles 336
 15.6.3 Mechanistic studies 337
15.7 Identification of plasma metabolites 337
15.8 Good laboratory practice 339
15.9 Conclusions 341

16 Strategy for the development of quantitative analytical procedures 342
 DAVID BAKES

 16.1 Introduction 342
 16.2 Preliminary requirements 343
 16.3 Detection 345
 16.4 Separation 348
 16.5 Sample preparation 349
 16.6 Solid-phase extraction 349
 16.7 Extraction sequence 350
 16.8 Liquid/liquid extraction 352
 16.9 Quantification 354
 16.9.1 Rule of one and two 354
 16.9.2 Standardisation 354
 16.9.3 Peak height and area 355
 16.9.4 Calibration check 355
 16.10 Validation 356
 16.11 Support work 356
 16.11.1 Matrix substitution 356
 16.11.2 Stability 357
 16.11.3 Metabolites 358
 16.12 Conclusions 358

Index 359