DNA–Protein Interactions

A Practical Approach

Edited by
Andrew Travers
MRC Laboratory of Molecular Biology,
Cambridge, UK

and

Malcolm Buckle
Instit Pasteur, Paris, France

OXFORD UNIVERSITY PRESS
Contents

Preface v
List of protocols xvii
Abbreviations xxi

1 Expression systems
Reinhard Grisshammer, Christian Kambach and Christopher G. Tate

1 Introduction 1

2 Expression in Escherichia coli 1
 Target genes and cDNAs 2
 Codon usage 2
 Fusion proteins 3
 Prokaryotic expression vectors 3
 E. coli hosts 6
 Growth conditions 6
 Co-expression of proteins 7
 Troubleshooting 9

3 The baculovirus expression system 11
 Introduction 11
 Choice of transfer vector and baculovirus DNA 12
 Choice of host cells and growth conditions 14
 Constructing a recombinant baculovirus 16
 Optimization of expression 22

Acknowledgements 23
References 23

2 Gel electrophoresis and bending in cisplatin-modified linear DNA
Jean-Marc Malinge, Annie Schwartz and Marc Leng

1 Introduction 25

2 Gel electrophoresis 25
 Background on gel electrophoresis 25
 Experimental procedure 26
CONTENTS

6 Practical aspects of fluorescence resonance energy transfer (FRET) and its applications in nucleic acid biochemistry

Frank Stühmeier, Robert M. Clegg, Alexander Hillisch and Stephan Diekmann

1 Introduction 77
2 Basic principles of fluorescence resonance energy transfer 78
 Orientation effects of the dyes 79
 Influence on the spectroscopic properties of the dyes by other mechanisms than FRET 80
 The influence of donor-acceptor distance distributions 81
3 Experimental determination of FRET efficiencies 81
 Normalizing the enhanced steady-state fluorescence of the energy acceptor 82
 Measuring changes in the fluorescence anisotropy of the energy donor 84
4 Preparation of dye-labelled DNA structures 85
 Labelling with an amino-reactive compounds 85
 Purification by denaturing and native PAGE 86
5 Characterization of dye-labelled DNA and RNA structures 86
6 Structural interpretation of FRET efficiencies 87
 Modelling the dye positions at the DNA helix ends 88
 Modelling nucleic acid conformations and protein-DNA interactions 90

References 92

7 Determination of DNA–ligand interactions by fluorescence correlation spectroscopy

J. Langowski and M. Tewes

1 Introduction 95
2 Theoretical foundation of FCS 97
 Concentration fluctuations in small systems 97
 Construction of a typical FCS instrument 102
 Sample requirements 106
3 Some examples from current research 106
 Triplex formation 106
 NtrC protein 107
 Vimentin oligomerization 109

Acknowledgement 110
References 110
11 Solid-phase DNAse I footprinting
Raphael Sandaltzopoulos and Peter B. Becker

1 Introduction 151
2 Solid-phase footprinting protocol 151
 Using a radioactive probe 151
 Using a non-radioactive labelled probe 156
3 Applications of solid-phase footprinting 157
Acknowledgements 158
References 158

12 Hydroxyl radical footprinting
Annie Kolb, Tamara Belyaera and Nigel Savery

1 Introduction 161
2 Principle of the procedure 162
 Chemistry of the reaction 162
 Principle of hydroxyl radical footprinting 162
 Interference method: the missing nucleoside assay 163
 Quantification and interpretation of hydroxyl radical footprinting data 163
3 Experimental procedures 165
 Preparation of the end-labelled DNA 165
 Formation of the DNA-protein complexes and attack by the hydroxyl radicals 169
 Interference studies: the missing nucleoside assay 171
 Data collection and analysis 172
References 173

13 Radiolytic cleavage of DNA. Mapping of the protein interaction sites
Michel Charlier and Mélanie Spotheim-Maurizot

1 Introduction 175
2 Irradiation of samples 176
3 Determination of FSB yield using plasmids. Protection factor 178
 Principle of the method 178
 Protection of plasmids by a DNA-binding protein 180
4 Determination of breakage sites using DNA restriction fragments.
 Protected sites: footprints 181
 Principle of the method 181
 Radiolysis of naked DNA 184
 Footprint of a protein on DNA 184
5 Conclusion 187
References 187

14 UV-laser photoreactivity of nucleoprotein complexes in vitro
Malcolm Buckle, Christophe Place and Iain K. Pemberton

1 Introduction 189
15 In vivo UV-laser footprinting
Frédéric Boccard, Sylvie Déthiollaz, Manuel Engelhorn, and Johannes Geiselmann

1 Introduction 201
2 The scope of UV-laser footprinting 201
 Detecting DNA-protein interactions in vivo 201
 Principle of the reaction 202
3 Practical considerations 203
 Equipment 203
 Calibration of the UV-footprinting signals in vitro 203
 Samples for in vivo footprinting 210
 Measurement of in vivo binding under different growth conditions 211
4 Conclusions and perspectives 213
References 213

16 Digitization and quantitative analysis of footprinting gels
Judith Smith

1 Introduction 215
2 Implementation 216
 Digitization 216
 Analysis 216
3 Algorithms 219
 Peak profile-fitting function 219
 Variability of peak width and shape 220
 Area decomposition from overlapping peaks 220
4 Instrument and software comparison 221
 Digitization 221
 Computer analysis 222
5 Conclusion 225
References 226
Appendix 227

17 Mapping histone positions in chromatin by protein-directed DNA crosslinking and cleavage
Andrew Travers

1 Introduction 229
2 Principle of the procedure 230
 Chemistry of conjugate-directed footprinting 230
 Limitations of the procedures 230
18 Kinetic analysis of enzyme template interactions. Nucleotide incorporation by DNA dependent RNA and DNA polymerases

Bianca Sclavi and Pascal Roux

1 Introduction 239
2 Purification of DNA fragments 240
3 Abortive initiation assays to probe interactions between RNA polymerases and prokaryotic promoters 241
 Principle of the assay (3, 4) 241
 Steady-state assays: radioactive incorporation of an α-32P-labelled NTP into the abortive product 242
 Analysis of the enzymatic reaction 245
 Lag assay. Quantitative characterization of the ‘on’ process 246
 Residence time of RNAP at the promoter. Dissociation rate constants 247
 The fluorescent assay 248
 Changes in mechanism for open complex formation and/or escape 248
4 Elongation assays to study the interactions between DNA polymerases and their templates 249
 Introduction 249
 Principle of the assay 250
 Sequential incorporation of several dNTP during a run-off assay 254
Acknowledgements 255
References 255

19 Kinetics of DNA Interactions surface plasmon resonance Spectroscopy

Björn Persson, Malcolm Buckle and Peter G. Stockley

1 Principles of surface plasmon resonance technology 257
 Introduction 257
 Principle of detection 257
 Surface chemistry 258
 Liquid handling system 259
 Data handling 260
2 SPR-assays of protein-DNA interactions 262
 Experimental design 262
 DNA immobilization 263
 Met J sensorgrams 264
 Kinetics 266
 The sensor chip surface 266
3 SPR assays of polymerase action 267
 Kinetics of RNA polymerase interactions with immobilized DNA 267
Chapter Authors

DNA immobilization 268
RNA polymerase binding to immobilized DNA 271

4 DNA hybridization 273
- DNA immobilization 275
- Hybridization analysis 276
- Effects of mismatches 278
- Sequence screening 278

Acknowledgements 279
References 279

20 Quantitative DNase I kinetics footprinting

A. K. M. M. Mollah and Michael Brenowitz

1 Introduction 281

2 Quench-flow DNase I footprinting 282
 - Preliminary considerations 282
 - Reagent preparation 283
 - Conducting a quench-flow DNase I ‘footprinting’ experiment 284
 - Experimental conditions and selection of data points to be acquired 286
 - Manual mixing DNase I kinetics footprinting 286
 - Data reduction and analysis 287
 - Accuracy and precision of the measurements 290

References 290

21 Analysis of DNA–protein interactions by time-resolved fluorescence spectroscopy

E. H. Z. Thompson and D. P. Millar

1 Introduction 291

2 Time-resolved fluorescence techniques 291
 - Fluorescence lifetime decays 292
 - Fluorescence anisotropy decay 294

3 Experimental guidelines 298
 - Guidelines for fluorophore choice 298
 - DNA labelling 299
 - Instrumentation 300

4 Examples 301
 - TyrR–DNA interaction: a simple example of fluorescence lifetime and anisotropy parameters 301
 - Klenow fragment–DNA interaction: a complex example of time-resolved anisotropy 303

References 306

22 Analysis of protein–DNA interactions in complex nucleoprotein assemblies

Iain K. Pemberton

1 Introduction 307
CONTENTS

2 Protocol for the transfer of a labelled nucleotide to a protein subunit by UV irradiation 307
 Radiolabelling of the DNA fragment at a specific nucleotide position 308
 Identification of subunit interactions by UV irradiation and nuclease digestion 313

3 Specific example of promoter recognition by the *E. coli* RNA polymerase 315

4 Perspectives 317

References 317

23 Site-specific protein–DNA photocrosslinking

Tae-Kyung Kim, Thierry Lagrange and Danny Reinberg

1 Introduction 319

2 Procedure 319
 Outline of procedure 319
 Preparation of site-specifically derivatized DNA fragment 321
 Photocrosslinking 327

3 Representative data 333

4 Prospects 334
 Acknowledgements 334
 References 334

24 DNA–protein complexes analysed by electron microscopy and cryo-microscopy

Eric Le Cam, Etienne Delain, Eric Larquet, Françoise Culard and Jean A. H. Cognet

1 Introduction 337

2 Electron microscopy of DNA–protein complexes spread on carbon film support 338
 Methods used to observe nucleic acids and nucleoprotein complexes 338
 Characterization and method for the analysis of the binding of protein MCI to DNA. Measurement of DNA curvature and flexibility 342

3 Cryo-electron microscopy 345
 Methods used to observe nucleic acids and nucleoprotein complexes 345
 3D-reconstruction of DNA molecules 347

 Acknowledgements 349
 References 350

25 Characterization of T7 RNA polymerase protein–DNA interactions during the initiation and elongation phases

Dmitry Temiakov, Pamela E. Karasavas and William T. McAllister

1 Introduction 351

2 Purification of T7 RNA polymerase 353

3 Formation of halted complexes in a conserved sequence context 355

4 Walking of T7 RNAP on a DNA template 356