Protein localization by fluorescence microscopy
A Practical Approach

Edited by
VICTORIA J. ALLAN
School of Biological Sciences,
University of Manchester,
2.205 Stopford Building, Oxford Road,
Manchester M13 9PT

OXFORD UNIVERSITY PRESS
Contents

List of Contributors xxi
Abbreviations xxxiii

1. Basic immunofluorescence 1

Victoria J. Allan

1. Introduction 1
 Important considerations 1

2. Growing cells on coverslips 2

3. Fixation 4
 Solvent fixation 7
 Fixation by chemical cross-linking 8
 Aldehyde cross-linking 8
 Other cross-linkers 11

4. Permeabilization 12
 Pre-extraction before fixation 14

5. Labelling protocols 15
 Antibody quality and preparation 16
 Single versus multiple labelling 17
 Mounting coverslips for microscopy 18

6. Controls 20

7. Double labelling as a means for localizing your protein within the cell 21
 Cytoskeletal structures 21
 Membranous organelles 21
 Endoplasmic reticulum 21
 Golgi apparatus, endosomes and lysosomes 23
 Mitochondria 23

Acknowledgements 25
References 25

2. Immunofluorescent labelling of sections 27

Alison J. North and J. Victor Small

1. Introduction 27
Contents

2. Choice of sectioning procedure 28
 Conventional (5–10 μm) sections 28
 Semi-thin (0.1–1 μm) sections 28
 The pros and cons 28
 Methods of tissue preparation for semi-thin sectioning 29

3. Tissue fixation 32
 Principles of fixation and the immunocytochemical compromise 32
 Preparation of buffered fixative solutions 33
 Fixation and processing for aldehyde-sensitive antigens 34

4. Preparation of conventional (5–10 μm) sections 34

5. Preparation of semi-thin (0.1–1 μm) sections 34
 Processing tissue 34
 Processing single cells or cellular aggregates 35
 Section thickness 36
 Handling semi-thin sections 37
 Sectioning by the Tokuyasu method 38
 Cryoprotection 38
 Mounting and freezing 38
 Sectioning 38
 Section retrieval 39
 Sectioning of PVA-embedded material 40
 Embedding in PVA 40
 Sectioning 40

6. Immunofluorescent labelling 42
 Labelling procedure 42
 Primary and secondary antibodies 42
 Optimization of labelling conditions 42
 Controls 43
 Strategies for multiple immunolabelling 43

7. Autofluorescence 45

8. Anti-fading mountants 46

9. Concluding remarks 46

References 47

3. Simultaneous *in situ* detection of DNA and proteins 51

Klaus Ersfeld and Elisa M. Stone

1. Introduction 51

2. Preparation of labelled DNA probes 51
 Labelling of DNA by nick translation 52
Contents

Labelling of DNA by PCR 54
3'-Labelling of oligonucleotides for FISH probes 55

3. Preparation of cells 56

4. Combined immunofluorescence and in situ hybridization 58

5. Applications of combined immunofluorescence and FISH in yeast 60
 Co-localizing chromosomal proteins and chromosomal domains 60
 Co-localizing cytoskeletal proteins and chromosomal domains 62

6. Microscopy and image analysis 64
Acknowledgements 65
References 65

4. Instruments for fluorescence imaging 67

W. B. Amos

1. Introduction 67
2. Light budget 70
3. Comparing instruments 71
 Quantum efficiency 71
 Noise 73
 Dynamic range 73
 Photon counting 74
4. Getting the right magnification 75
 Magnification for cameras 75
 Magnification in laser-scanning microscopes 76
5. Light sources and fluorochromes 77

6. Light detectors 78
 Photomultipliers 78
 Photodiodes 80
 Avalanche photodiodes 81
 Television cameras 81
 Vidicon tube 82
 SIT cameras 82
 CCD cameras 82
 Video-rate CCDs and readout noise 84
 Long integration CCDs 85
 ICCDs 85
 CMOS cameras 87
 Camera-based spectral imaging 87
 Testing cameras 88

7. Scanning optical microscopes 88
 Advantages of scanning per se 88
Contents

Confocal microscopes 89
Confocal microscopes where a single spot of light is scanned 89
Acousto-optic scanning 93
Parallel confocal microscopes (multi-spot or slit scanners) 94
How to test a confocal microscope 97
Choosing an objective lens 97
Does a confocal microscope have better resolution than a conventional one? 98
How are the lateral and axial resolutions changed by confocal operation? 99
What can be done about chromatic aberration in confocal imaging? 101

Multiphoton imaging 102
How do multiphoton optics differ from confocal? 102
Apparatus for multiphoton imaging 104
Pros and cons of multiphoton versus confocal imaging 104

8. How to choose a fluorescence imaging system 105

Acknowledgements 106

References 106

5. Fluorescence microscopy of living vertebrate cells 109

Rainer Pepperkok and David Shima

1. Introduction 109

2. Hardware and software requirements 110
Microscopes and associated hardware 111
3D sectioning microscope 111
Confocal laser-scanning microscopes 112
Imaging detectors for 3D sectioning microscopy 112
CCD cameras 113
Intensified CCD cameras 115
Colour cameras 115
Temperature and environmental control 116
Data analysis, image processing and data presentation 116

3. Fluorescent labelling of molecules and organelles in living cells 117
Cell-permeable markers 117
Labelling by micro-injection of fluorescently labelled proteins or antibodies 117
Fluorescent labelling of proteins 118
Micro-injection of fluorescently labelled markers 121

4. Utilizing GFP and its variants in live-cell fluorescence microscopy 123
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>123</td>
</tr>
<tr>
<td>Practical considerations</td>
<td>123</td>
</tr>
<tr>
<td>Creating GFP chimeras</td>
<td>125</td>
</tr>
<tr>
<td>Considerations for stable and transient expression of GFP chimeras in cells</td>
<td>126</td>
</tr>
<tr>
<td>5. Examples of imaging fluorescent molecules in living cells</td>
<td>127</td>
</tr>
<tr>
<td>Reagents and microscopy set-up</td>
<td>127</td>
</tr>
<tr>
<td>Mitosis</td>
<td>128</td>
</tr>
<tr>
<td>Visualizing membrane transport in the secretory pathway</td>
<td>129</td>
</tr>
<tr>
<td>References</td>
<td>132</td>
</tr>
</tbody>
</table>

6. Visualizing fluorescence in *Drosophila*—optimal detection in thick specimens
Ilan Davis

1. Introduction | 133 |
2. Spread of light from a point source | 134 |
 - Basic properties of objective lenses | 134 |
 - Classes of objective lens | 135 |
 - Resolution and brightness of objective lenses | 135 |
 - Optical aberrations and their correction | 136 |
 - Measuring the spread of light within a specimen | 139 |
 - Determining the point-spread function of a particular lens and microscope configuration | 140 |
 - Using a point-spread function to measure resolution and optical aberrations | 142 |
 - Minimizing spherical aberration by varying the refractive index of the immersion oil | 144 |
3. Imaging fluorescent signals in fixed *Drosophila* embryos and egg chambers | 146 |
 - Difficulties imaging fluorescent signal inside a biological specimen | 146 |
 - Mounting fixed *Drosophila* embryos and egg chambers | 147 |
 - Choosing the correct mounting medium | 148 |
4. Re-assigning or removing out-of-focus light | 149 |
 - Deconvolution: basic principles | 150 |
 - Deconvolution: practical considerations | 151 |
 - Deconvolution of images from thick specimens | 152 |
 - Incomplete deconvolution and deconvolution artefacts | 152 |
5. Time-lapse microscopy of living *Drosophila* embryos and egg chambers expressing GFP markers or micro-injected with fluorescent reagents | 153 |
 - Mounting, micro-injecting and imaging living embryos | 153 |
 - Fixing micro-injected *Drosophila* embryos | 155 |
 - Fixing GFP-expressing embryos | 156 |
Contents

Preparation, mounting and imaging living egg chambers 157
Choice of expression vectors 158
Choice of GFP mutants 158
Choice of filter cubes 160

6. Troubleshooting common imaging problems 160
Acknowledgements 161
References 161

7. Green fluorescent protein in plants 163

Chris Hawes, Petra Boevink and Ian Moore

1. Introduction 163
2. Choice of GFP 163
3. Expression systems 165
 Virus-mediated expression of GFP 165
 Transient expression 169
 Agrobacterium-mediated transient expression in Nicotiana sp. 171
4. Double labelling 174
5. Microscopy 175
References 176

8. Fluorescence microscopy in yeast 179

Iain M. Hagan and Kathryn R. Ayscough

1. Introduction 179
2. Practical considerations when working with yeast 181
 Difficulties encountered when working with yeast 181
 Growing yeast 181
 Harvesting and fixing cells 182
 Considerations when fixing yeast cells 182
 Chemical fixation to cross-link proteins 182
 Quenching 183
 The duration of chemical fixation is a key consideration 183
 Fixing by protein precipitation: solvent fixation 183
 Considerations when harvesting cells 184
 Cell wall digestion 185
 Antibodies 185
 Primary antibodies 185
 Secondary antibodies 188
 Double labelling 188
 Epitope masking 189

xviii