Plant Responses to Environmental Stress

EDITED BY

M.F. Smallwood, C.M. Calvert and D.J. Bowles
The Plant Laboratory, The University of York, PO Box 373, York YO1 5YW, UK
Contents

Contributors xi
Abbreviations xvii
Preface xxi

SECTION 1: Calcium as a Second Messenger in Abiotic Stress Signalling

1 Calcium signalling in plants responding to stress. *H. Knight and M.R. Knight*
 Background 1
 Low temperature stress 1
 Osmotic stress, drought and salinity stress 2
 Oxidative stress 3
 Heat stress 4
 Mechanical stress 5
 Key questions 5
 Bottlenecks hindering progress 6
 Future directions 6
 References 7

SECTION 2: UV Light Stress

2 Regulation of phenylpropanoid and flavonoid biosynthesis genes by UV-B in *Arabidopsis*. *G.I. Jenkins*
 Background 9
 How is UV-B perceived? 10
 UV-B signal transduction regulating *PAL* and *CHS* in *Arabidopsis* 11
 Interactions between UV-B, UV-A and blue light signalling pathways 13
 Mutants altered in the UV-B induction of *CHS* 13
 References 14

 Background 17
 Changes in gene expression in response to UV-B exposure 18
 Factors influencing effects of UV-B on gene expression 20
 Signal transduction pathways 21
 References 23
SECTION 3: Reactive Oxygen Species in Abiotic Stress Responses

4 The role of hydrogen peroxide and antioxidants in systemic acclimation to photo-oxidative stress in Arabidopsis. S. Karpinski, H. Reynolds, B. Karpinska, G. Wingsle, G. Creissen and P. Mullineaux 25
Background 25
The problem and scientific approach 27
Conclusion 31
References 31

Background 33
Ozone-responsive promoters 34
Putative regulatory sequences of the ozone-responsive Vst1 promoter region 34
Biotechnological application 38
References 39

Background 43
Signalling pathways in ozone-exposed tobacco 44
References 48

7 Iron and oxidative stress in plants. P. Fourcroy 51
Background 51
Key questions 51
Plant defence against reactive oxygen species 52
Iron plays a dual role in cellular metabolism 53
Iron and oxygen metabolisms are linked 53
Iron regulates the expression of ascorbate peroxidase 53
Iron and oxidative stress 55
Specificity of the iron induction of gene expression 55
Future directions 55
References 56

8 H$_2$O$_2$ signalling in plant cells. S. Neill, R. Desikan, A. Clarke and J. Hancock 59
Background 59
H$_2$O$_2$ signalling in suspension cultures of Arabidopsis thaliana 60
References 63

SECTION 4: Temperature Stress

9 De-repression of heat shock protein synthesis in transgenic plants. F. Schöffl and R. Pründl 65
Background 65
Structural and functional characteristics of heat shock factors 66
Regulation of heat shock factor activity 69
Transgenic expression and de-repression of heat shock factors in plants 70
Contents

Concluding remarks 71
References 72

10 Regulation of plant cold acclimation. M.F. Thomashow 75
Background 75
Identification and regulation of Arabidopsis freezing tolerance genes 76
Concluding remarks 80
References 81

11 Identification and molecular characterization of CBF2 and CBF3, two genes from Arabidopsis that encode AP2 domain-containing proteins and are induced by low temperatures. J. Medina and J. Salinas 83
Background 83
Genomic arrangement and sequence analysis of CBF genes 84
Regulation of CBF gene expression 86
Future directions 86
References 87

Background 89
Low temperature control of gene expression 90
References 96

13 The quest to elucidate the role of the COR genes and polypeptides in the cold acclimation process. P.L. Steponkus and M. Uemura 99
Background 99
Effect of COR15a on freezing tolerance 101
Mode of action of the COR15a gene 103
Mechanism by which COR15am increases freezing tolerance 106
COR genes in perspective 107
Future challenges 108
References 109

Background 111
Thylakoids as an assay system for the detection of cryoprotective proteins 112
Proteins with cryoprotective activity for thylakoids 112
Functional comparison 114
Future directions 114
References 115

15 Winter survival of transgenic Medicago sativa over-expressing superoxide dismutase. B.D. McKersie, S.R. Bowley, K.S. Jones and B. Gossen 117
Background 117
Characterization of transgenic alfalfa plants expressing superoxide dismutase 118
Effect of superoxide dismutase over-expression on freezing tolerance and winter survival 120
Effect of superoxide dismutase over-expression on bacterial and fungal wilt resistance 122
Discussion 123
References 125

16 The technological potential of biological frost protection – or if only we were as clever as plants. P.J. Lillford and C.B. Holt 127
Background 127
The glassy state 128
Nucleators: food applications 128
Nucleators: non-food applications 129
Antifreezes: food applications 129
Antifreezes: non-food applications 131
References 131

SECTION 5: Drought Stress

Background 133
Functions of drought-inducible genes 134
Complex regulatory systems for gene expression by drought stress 135
Important roles of drought-responsive element/C-repeat (DRE/CRT) cis-acting element and its DNA-binding proteins in abscisic acid-independent gene expression during drought and cold stress (pathway IV) 136
Signal perception and signal transduction in drought stress 138
Key questions 140
Future directions 141
References 142

Background 145
CDSP 32 characterization 146
CDSP 34 characterization 148
Involvement of the two proteins in the response to oxidative stress 151
References 151

19 Late embryogenesis abundant (LEA) proteins: expression and regulation in the resurrection plant Craterostigma plantagineum. D. Bartels 153
Background 153
Regulation of expression 154
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Seed peroxiredoxins.</td>
<td>R.B. Aalen, R.A.P. Stacy and C. Haslekas</td>
<td>167</td>
</tr>
</tbody>
</table>
SECTION 7: General Stress-related Gene Products

25 Production of transgenic tobacco plants with arginine decarboxylase under the control of an inducible promoter. C. Masgrau, M. Panicot, A. Cordeiro, C. Bortolotti, O. Ruiz, T. Altabella and A.F. Tiburcio

Background 191
Molecular approach to the role of polyamine accumulation in abiotic stress 192
Production of tobacco transgenic plants with the oat arginine decarboxylase-coding region under the control of the inducible promoter TripleX 193
Analysis of T1 transgenic plants from line 1.1 193
Analysis of T1 transgenic plants from line 52 194
Accumulation of endogenous putrescine (and spermidine) leads to toxicity symptoms 194
Production of tobacco transgenic plants with the homologous tobacco arginine decarboxylase cDNA, in sense and antisense orientation, under the control of the inducible promoter TripleX 195
References 196

Background 199
Genes expressed in the flavedo during maturation and in response to environmental stresses 200
References 202

Background 205
Constraints on production and use of cassava 205
Aspects of post-harvest physiological deterioration 206
Commonality of post-harvest physiological deterioration and biotic/abiotic stress responses 207
Molecular approaches to post-harvest physiological deterioration prevention 208
References 209

28 Cassava leaves: approach for studies on the applicability of proteins from leaves of cassava as an additive for food fortification or as a molecular sensor of abiotic stress. M.P. Stephan, F.H. Lima and A.S. Frazão

Background 211
Technical approach for extracting proteins from cassava leaves 212
Conclusions 218
References 218

Index 221