Timber Decay in Buildings
The conservation approach to treatment

Brian Ridout
Contents

Foreword xi
Preface xiii
Illustration acknowledgements xvi

Part 1: Nature of Wood 1

1 Origins and durability of building timber 3
1.1 Introduction 3
1.2 Structural polymers 3
1.3 Cell wall 5
1.4 Structure of wood 7
1.4.1 Softwoods and hardwoods 7
1.4.2 Structure of softwoods 8
1.4.3 Structure of hardwoods 9
1.5 Functional tree: differences between softwood and hardwood species 9
1.5.1 Juvenile or core wood 13
1.5.2 Mature wood 14
1.5.3 Over-mature wood 15

2 Sorption of water by timber 16
2.1 Natural hygroscopocity 16
2.1.1 Ray cell orientation 17
2.1.2 Latewood/earlywood orientation 17
2.2 Age-related changes 17
2.3 Effects of decay on moisture sorption 19

Part 2: Agents of Decay and Traditional Treatments 21

3 Post-harvest changes and decay 23
3.1 Effects of moisture content 23
CONTENTS

3.2 Nutrient availability after conversion: the potential for decay 24
3.3 Damage caused by insects 25
 3.3.1 Cell-content feeders 27
 3.3.2 Cell-content and partial cell-wall feeders 27
 3.3.3 Cell-content and cell-wall feeders 27
3.4 Decay caused by fungi 27
 3.4.1 Moulds and stains 28
 3.4.2 Soft rot 28
 3.4.3 White rot 29
 3.4.4 Brown rots 29
3.5 European hazard classification for building timbers 30
3.6 Physical/chemical decay 31
 3.6.1 Thermal damage 31
 3.6.2 Visible and ultraviolet (UV) light 32
 3.6.3 Surface degradation caused by mechanical damage 32
 3.6.4 Chemical decay 32
3.7 Acidity and corrosion of metals by timber 35

4 Death watch beetle (Xestobium rufovillosum) 37
 4.1 Brief history of the beetle and the development of insecticides 37
 4.2 Biology of the death watch beetle 39
 4.3 Monitoring current activity and population 48
 4.4 Methods of treatment 49
 4.4.1 Defrassing 50
 4.4.2 Spraying 50
 4.4.3 Injection 52
 4.4.4 Paste treatment 53
 4.4.5 Smoke treatment 53
 4.4.6 Insect traps 54

5 Furniture beetle or woodworm (Anobium punctatum) 55
 5.1 Brief history of the beetle and its treatment 55
 5.2 Biology of the furniture beetle 58
 5.3 Monitoring current activity and population 60
 5.4 Methods of treatment and control 62
 5.4.1 Spray and injection treatments 62
 5.4.2 Fogging 63
 5.4.3 Freezing/heating 64
 5.4.4 Fumigation 64

6 Minor decay insects 65
 6.1 House longhorn beetle 65
 6.1.1 Methods of treatment 67
 6.2 Powder post beetles (Lyctidae, Bostrychidae) 67
 6.2.1 Methods of treatment 70
 6.3 Weevils (Curculionidae) 70
 6.3.1 Methods of treatment 71
Contents

6.4 Wharf borer (Nacerdes melanura)
6.4.1 Methods of treatment
6.5 Pinhole and shothole borers (Scolytidae, Platypodidae)
6.6 Risk of termites in Britain
6.6.1 Methods of treatment

7 Dry rot
7.1 History of dry rot and early treatments
7.2 Biology of dry rot
7.3 Traditional treatments
7.3.1 Exposing the full extent of the infection
7.3.2 Cutting back past the last signs of decay
7.3.3 Wall irrigation/toxic box treatments
7.3.4 Spray and paste treatments
7.3.5 Fungicidal renders
7.3.6 Heat treatments
7.3.7 Timber reinstatement
7.4 Detection of dry rot with dogs

8 Wet rots and minor decay fungi
8.1 Identification of fungi in buildings
8.2 Category A: Moulds
8.2.1 Damage to timber
8.3 Category B: Jelly fungi or plaster moulds
8.3.1 Elf cup fungi (mostly Pezizaceae)
8.3.2 Pyronema spp. (Pseudoascoboleae)
8.3.3 Damage to timber
8.4 Category C: Resupinate fungi
8.4.1 Cellar rot (Coniophora puteana)
8.4.2 Asterostroma cervicolor
8.4.3 Damage to timber
8.5 Category D: Pore fungi
8.5.1 Mine fungus (Antrodia vaillantii)
8.5.2 Oak rot (Donkioporia expansa)
8.5.3 Damage to timber
8.6 Category E: Gilled fungi
8.6.1 Ink cap fungus (Coprinus)
8.6.2 Damage to timber

9 Timber pretreatments
9.1 Brief history of pretreatments
9.2 Modern water-based preservatives for pressure impregnation
9.3 Organic solvent-based preservatives for pressure impregnation
9.4 Diffusion pretreatments
9.5 Dip/immersion pretreatments
9.6 Preservative penetration

vii
CONTENTS

9.7 Metal corrosion in pretreated timber 107
9.8 Selection and use of pretreated timber 107
9.9 Disposal of pretreated timber and waste 108

10 Regulations, legislation and charters 110
10.1 European Standards for wood preservation 110
10.2 Controls on the manufacture and use of pesticides 110
10.3 Protection of bats 111
10.4 Control of Substances Hazardous to Health (COSHH) Regulations 1994 113
10.5 Construction (Design and Management) Regulations (CDM) 1994 115

Part 3: Effects of the Building Environment on Timbers 117

11 Drying and wetting: A historical perspective on timber decay within buildings 119
11.1 Changes in moisture content after felling 119
11.2 Air drying 120
11.3 Kiln drying 121
11.4 Moisture, the key to decay 125
11.5 Air temperature and relative humidity 127
11.6 Water absorption along the grain 128
11.7 Water absorption across the grain 130
11.8 Some consequences of conversion 131
11.9 Timber replacement and re-use 133
11.10 From oak frames to brick and softwood 133
11.11 Some consequences of war 136
11.12 Durability of old and modern timbers compared 136
11.13 Use of second-hand timbers 139
11.14 Timber and walls 140

12 Fire damage and dereliction 142
12.1 Dry rot and fire damage 142
12.2 Weatherproofing 142
12.3 Removal of debris and timber cleaning 143
12.4 Stripping interiors 144
12.4.1 Position within the building 144
12.4.2 Floors, panelling, joinery and linings 147
12.4.3 Storage 148
12.4.4 History of dry rot 149
12.5 Progression of fungal assemblages 149
12.6 Dereliction 150
12.7 Modes and rates of drying 151
12.7.1 First-stage drying 152
12.7.2 Second-stage drying 152
CONTENTS

12.8 Drying by increased ventilation 153
12.9 Accelerated drying 153
 12.9.1 Air blowers 155
 12.9.2 Dehumidifiers 155
12.10 Isolation of timbers and the mobilization of wall salts 157

13 Monitoring the building environment 160
 13.1 Moisture meters and their accuracy in timber 160
 13.1.1 Moisture monitoring by the oven/balance method 162
 13.1.2 Remote moisture monitoring 163
 13.2 Brickwork and masonry moisture monitoring 165
13.3 Automated remote monitoring 165
 13.3.1 Environmental monitoring 166
 13.3.2 Leak detection 166
 13.3.3 Multiparameter moisture monitoring 166

Part 4: Evolving a Philosophy for Timber Treatment 169

14 Resolving conflicts between treatment and conservation 171
 14.1 Remedial industry 171
 14.2 Precautionary treatments 172
 14.3 Guarantees 173
 14.4 International and national policies on minimal intervention 174
 14.5 Natural control of decay 176
 14.5.1 Natural insect population regulators within the building ecosystem 176
 14.5.2 Environmental control of death watch beetle: Westminster Hall 180
 14.5.3 Environmental control of furniture beetle 184
 14.5.4 Environmental control of dry rot 184
 14.6 Holistic approach to dry rot treatment 187
 14.6.1 Evaluate the cause and level of fungal activity 187
 14.6.2 Evaluate moisture levels and distribution 187
 14.6.3 Locate and assess all timbers at risk 187
 14.7 Conclusions 187

Appendix A: Analytical approach to preservative treatment 189
 A.1 Introduction to the use of analytical keys 189
 A.2 Key to the treatment of death watch beetle 190
 A.3 Key to the treatment of furniture beetle 192
 A.4 Key to the treatment of decay caused by fungi, including dry rot 194

Appendix B: Dry rot case studies 197
 B.1 Case study 1: Arniston House, Midlothian 197
 B.2 Case study 2: Bute Hall, University of Glasgow 198
CONTENTS

B.3 Case study 3: Walsworth Hall, Gloucestershire 199
B.4 Case study 4: Sea Captain's House and Calendering Works, Dundee 202
B.5 Case study 5: Lees Court, Kent 206
B.6 Case study 6: Christchurch, Waterloo, Merseyside 207

References and bibliography 210
Index 222