Asphalts in road construction

Edited by Dr Robert N. Hunter

Thomas Telford, London
Contents

1. Assessing aggregates for use in asphalts
 1.1. Preamble
 1.2. Why test aggregates?
 1.3. Classifying aggregates
 1.3.1. Natural rock types
 1.3.2. Artificial/synthetic aggregates
 1.3.3. Recycled aggregates
 1.4. Aggregate petrology — a simple classification
 1.5. Important studies relating petrology to aggregate properties
 1.6. Sources of high quality aggregates in the UK
 1.7. Use of aggregates for asphalts around the world
 1.8. Basic problems with the way that aggregates are tested
 1.9. Aggregate properties relevant to asphalts
 1.10. Current test methods for assessing aggregates
 1.11. Summary of main aggregate testing requirements
 1.12. Main test methods used to assess the properties of aggregates
 1.12.1. Sampling
 1.12.2. Size distribution
 1.12.3. Relative density and water absorption
 1.12.4. Cleanliness
 1.12.5. Shape
 1.12.6. Strength
 1.13. Proposed European norms
 1.13.1. Selection of test methods
 1.14. Summary

2. Bitumens
 2.1. Preamble
 2.2. The nature of bitumen

References
2.2.1. Saturates 46
2.2.2. Aromatics 46
2.2.3. Resins 46
2.2.4. Asphaltenes 47
2.3. Physical properties of bitumen 50
2.4. Production of bitumen 53
2.5. Specification of bitumen 55
 2.5.1. Current UK practice 55
 2.5.2. European specifications 62
 2.5.3. Performance specifications 65
2.6. Rheology 69
 2.6.1. Terminology and theory 69
 2.6.2. Rheological tests and data manipulation 71
 2.6.3. Relationship of rheological parameters to mix performance 75
2.7. Bitumen modification 75
 2.7.1. Polymer modification 76
 2.7.2. Storage stability 80
 2.7.3. Production considerations for polymer modified binders 81
 2.7.4. The effects of polymer modification 82
 2.7.5. Other bitumen modifiers 86
2.8. Emulsions and cutbacks 89
 2.8.1. Cutback bitumen 89
 2.8.2. Bitumen emulsion 90
 2.8.3. Testing of bitumen emulsions and cutback bitumens 94
 2.8.4. Performance specifications for emulsions and cutbacks 95
2.9. Foamed bitumen 95
2.10. Natural bitumen 96
 2.10.1. Trinidad Lake Asphalt (TLA) 96
 2.10.2. Gilsonite 97
 2.10.3. Rock asphalt 97
2.11. Tar 97
2.12. Health and safety aspects 98
2.13. Summary 99
References 99

3. Functions and properties of road layers 107
3.1. Preamble 107
3.2. The ideal pavement 107
3.3. Design concepts 110
3.4. The subgrade 113
3.5. The foundation 117
3.6. Bituminous roadbases and basecourses 119
3.7. Wearing courses 123
 3.7.1. Hot-rolled asphalt (HRA) 123
3.7.2. Porous asphalt (PA) 123
3.7.3. Asphaltic concrete and dense bitumen macadam (DBM) 124
3.7.4. Stone mastic asphalt (SMA) 124
3.7.5. Thin surfacings 124

3.8. Comparison of wearing course characteristics 125

3.9. Skid resistance 126

3.10. Measuring the mechanical properties of road layers 126
 3.10.1. The Nottingham Asphalt Tester 126
 3.10.2. The Falling Weight Deflectometer 133
 3.10.3. The Dynamic Cone Penetrometer 139

3.11. Summary 140

References 141

4. Design and maintenance of asphalt pavements 144

4.1. Preamble 144

4.2. Introduction 145

4.3. Volume 7 of the Design Manual for Roads and Bridges 146

4.4. Overview of pavement structure, type and performance 147
 4.4.1. Pavement types 150
 4.4.2. Pavement performance 150
 4.4.3. HD 35 technical information 151

4.5. Traffic assessment 151
 4.5.1. Pavement wear factors 152
 4.5.2. The standard method of traffic assessment 153
 4.5.3. The structural assessment and maintenance method 154
 4.5.4. Heavy duty asphalt pavements 154
 4.5.5. The influence of vehicle speed on pavement design 155

4.6. Design of pavement foundations 155
 4.6.1. Assessment of the subgrade 156
 4.6.2. Sub-base and capping 157
 4.6.3. Drainage 158
 4.6.4. Frost resistance 159
 4.6.5. Stabilized sub-base and design for performance 159

4.7. Design of asphalt thickness — the empirical approach 160
 4.7.1. Staged construction — design for 20 years initial life 160
 4.7.2. Pavements of indeterminate life 161
 4.7.3. Roadbase and basecourse materials 161
 4.7.4. Clause 929: Design, Compaction Assessment and Compliance of Roadbase and Basecourse Macadams 164
 4.7.5. Design curves — normal pavements 165
CONTENTS

4.7.6. Design curves—long life pavements 166
4.7.7. Asphalt in rigid composite pavements 167

4.8. Design of asphalt thickness—the analytical approach 167
4.8.1. The Shell Pavement Design Method 168
4.8.2. NOAH© 169
4.8.3. Use of stiffness data in analytical design 170
4.8.4. COST333/AMADEUS 170

4.9. Widening of pavements and haunch strengthening 170
4.9.1. Widening with additional lanes 172
4.9.2. Haunch strengthening and local widening 172
4.9.3. Asphalt substitution 173

4.10. Assessment—skid resistance 174
4.10.1. Surface texture 175
4.10.2. Measurement of microtexture—the PSV Test 177
4.10.3. Aggregate selection 178
4.10.4. Measurement of macrotexture 178
4.10.5. Measurement of skid resistance 179
4.10.6. Skid resistance and accident risk 181

4.11. Assessment—structural conditions 181
4.11.1. Routine structural assessment programme 182
4.11.2. The High Speed Road Monitor 182
4.11.3. Visual condition surveys 183
4.11.4. Deflection surveys 183
4.11.5. Using deflection to estimate residual life 185
4.11.6. Planning an investigation—data review 186
4.11.7. The detailed investigation 187
4.11.8. Falling weight deflectometer and ground radar 187

4.12. Design of maintenance treatments 188
4.12.1. Design of structural maintenance 188
4.12.2. Wearing course replacement 188
4.12.3. Overlay 188
4.12.4. Reconstruction 190
4.12.5. Minor repairs and surface treatments 190

4.13. Asphalt surfacing and surfacing materials 191
4.13.1. Aggregate selection 191
4.13.2. Tyre-generated noise 193
4.13.3. British Board of Agrément/HAPAS 194
4.13.4. Hot rolled asphalt wearing course 194
4.13.5. Porous asphalt 195
4.13.6. Thin surfacings 195
4.13.7. Stone mastic asphalt 196
4.13.8. Bitumen macadam wearing course 196
4.13.9. Retexturing of asphalt surfacing 196

4.14. Summary 196
References 197
5. Production: processing raw materials to mixed materials 202

5.1. Preamble 202

5.2. Raw materials 202
5.2.1. Crushed rocks 202
5.2.2. Sand and gravel 203
5.2.3. Blast furnace slag and steel slag 203

5.3. Resources 203

5.4. Methods of producing aggregates 204
5.4.1. Hardrock crushing and screening plant 205
5.4.2. Limestone crushing and screening plant 208
5.4.3. Sand and gravel processing plants 211

5.5. Methods of producing asphalts 212
5.5.1. Conventional asphalt batch plants 214
5.5.2. Batch heater plant 216
5.5.3. Drum mixer 218
5.5.4. Counterflow drum mixer 223
5.5.5. Summary of main features of asphalt production plants 224

5.6. Controlling manufacture 224
5.6.1. Aggregate processing plants 224
5.6.2. Hot rolled asphalt and coated macadam plants 227

5.7. Summary 233

References 234

6. Surfacing plant 235

6.1. Preamble 235

6.2. Lorries 236

6.3. Pavers 237
6.3.1. Elements of a paver 239
6.3.2. How asphalt flows through a paver 239
6.3.3. Action of the screed 240
6.3.4. The screed 241
6.3.5. Automatic control devices 245
6.3.6. Integral sprayer 250

6.4. Paver delivery systems 254

6.5. Compaction plant 255
6.5.1. Dead weight tandem and three-point rollers 256
6.5.2. Pneumatic tyred rollers 257
6.5.3. Vibrating rollers 258

6.6. Ancillary equipment 259
6.6.1. Milling machines 259
6.6.2. Chipping machines 260
6.6.3. Hot boxes 262
6.6.4. Infrared heaters 262

6.7. Summary 262
7. Good surfacing practice

7.1. Preamble

7.2. Safety
 7.2.1. Site safety policy 264
 7.2.2. Site safety officer 266
 7.2.3. Control and monitoring 266
 7.2.4. General site safety 267
 7.2.5. Precautions for paver work 268
 7.2.6. Environmental issues 269

7.3. Estimating for work
 7.3.1. Materials 270
 7.3.2. Programme 270
 7.3.3. Cost 271
 7.3.4. Price 278

7.4. Planning and programming

7.5. Pre-start inspection

7.6. Ordering plant, equipment and materials
 7.6.1. Ordering plant and equipment 281
 7.6.2. Ordering materials 282
 7.6.3. Surfacing operations checklist 285

7.7. Transportation

7.8. Laying
 7.8.1. Setting out 285
 7.8.2. Use of a block-up staff 289
 7.8.3. Laying asphalts by hand 293
 7.8.4. Machine laying 297
 7.8.5. Laying thin surfacings and SMAs 299
 7.8.6. Repair to and reinstatement of thin surfacings and SMAs 304

7.9. The application of precoated chippings into HRA wearing course

7.10. Rolling and compaction
 7.10.1. Rolling patterns 309
 7.10.2. Correlation between layer thickness and density of the compacted mat 310
 7.10.3. Factors affecting rolling technique and the achievement of optimum mat density 311

7.11. Vibratory compaction

7.12. Quality control and checks
 7.12.1. The gang 314
 7.12.2. The plant 314
 7.12.3. The weather 315
 7.12.4. Condition of the site 316
 7.12.5. The material 316
 7.12.6. Other factors 317
xxii CONTENTS

9.4.7. Wheel-Tracking Test 426
9.4.8. Creep Test 427
9.4.9. Elastic stiffness 431

9.5. Analysis of test results 434
 9.5.1. Statistical techniques 434
 9.5.2. Control charts 437
 9.5.3. Significance testing 446
 9.5.4. Recommendation 450

9.6. Laboratory management 450
9.7. Asphalt Quality Assurance Scheme 457
9.8. Summary 458
References 458

10. Specialist surface treatments 465
10.1. Preamble 465
10.2. Surface dressing 465
 10.2.1. Surface dressing specification 467
 10.2.2. Factors which influence the design and performance of
 surface dressings 467
 10.2.3. Types of surface dressing 484
 10.2.4. The Road Note 39 design approach 487
 10.2.5. Surface dressing equipment 487
 10.2.6. Types of surface dressing failures 490
 10.2.7. Surface dressing season 491
 10.2.8. Safety 492
10.3. Crack sealing/overbanding 494
10.4. Slurry surfacings/micro-surfacings 494
 10.4.1. Footway slurry 494
 10.4.2. Thin carriageway slurries 495
 10.4.3. Thick carriageway slurries 495
 10.4.4. Micro-asphalts 495
 10.4.5. Airfield slurries 495
 10.4.6. Usage, materials and developments 495
10.5. High friction surfacings 496
 10.5.1. Bitumen-extended epoxy resins 496
 10.5.2. Epoxy resin 496
 10.5.3. Polyurethane resin 497
 10.5.4. Acrylic resins 497
 10.5.5. Thermoplastic rosin esters 497
10.6. Mastic asphalt 497
10.7. Thin surfacings 498
 10.7.1. Multiple surface dressing 498
 10.7.2. Ultra thin hot asphalt laid by paver 498
 10.7.3. Thin polymer modified asphaltic concrete 499
 10.7.4. Stone mastic asphalt (SMA) 500
10.8. Coloured surfacings 500
 10.8.1. Incorporating coloured pigments into the asphalt 501