INJECTABLE DRUG DEVELOPMENT

TECHNIQUES TO REDUCE PAIN AND IRRITATION

Edited by

Pramod K. Gupta
and
Gayle A. Brazeau

Interpharm Press
Denver, Colorado
Contents

Preface xiii
Acknowledgments xiv
Editors and Contributors xv

A: BACKGROUND OF PAIN, IRRITATION, AND/OR MUSCLE DAMAGE WITH INJECTABLES

1. Challenges in the Development of Injectable Products 3

 Michael J. Akers

 General Challenges 4
 Safety Concerns 5
 Microbiological and Other Contamination Challenges 6
 Stability Challenges 8
 Solubility Challenges 10
 Packaging Challenges 11
 Manufacturing Challenges 11
 Delivery/Administration Challenges 13
 References 14
2. Pain, Irritation, and Tissue Damage with Injections

Wolfgang Klement

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must Injections Hurt?</td>
<td>15</td>
</tr>
<tr>
<td>Mechanisms of Pain and Damage</td>
<td>16</td>
</tr>
<tr>
<td>Routes of Drug Injection</td>
<td>18</td>
</tr>
<tr>
<td>Cutaneous/Subcutaneous Injections</td>
<td>18</td>
</tr>
<tr>
<td>Intramuscular Injections</td>
<td>22</td>
</tr>
<tr>
<td>Intra-arterial Injections</td>
<td>24</td>
</tr>
<tr>
<td>Intravenous Injections</td>
<td>26</td>
</tr>
<tr>
<td>Conclusions and Perspectives</td>
<td>49</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>50</td>
</tr>
<tr>
<td>References</td>
<td>50</td>
</tr>
</tbody>
</table>

3. Mechanisms of Muscle Damage with Injectable Products

Anne McArdle and Malcolm J. Jackson

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>57</td>
</tr>
<tr>
<td>Introduction</td>
<td>57</td>
</tr>
<tr>
<td>Mechanisms of Muscle Damage</td>
<td>58</td>
</tr>
<tr>
<td>Elevation of Intracellular Calcium Concentration</td>
<td>58</td>
</tr>
<tr>
<td>Increased Free Radical Production</td>
<td>60</td>
</tr>
<tr>
<td>Loss of Energy Homeostasis</td>
<td>61</td>
</tr>
<tr>
<td>Methods of Assessing Drug-Induced Skeletal Muscle Damage</td>
<td>62</td>
</tr>
<tr>
<td>Microscopic Analysis of Skeletal Muscle</td>
<td>62</td>
</tr>
<tr>
<td>Muscle Function Studies</td>
<td>63</td>
</tr>
<tr>
<td>Leakage of Intramuscular Proteins</td>
<td>64</td>
</tr>
<tr>
<td>Microdialysis Studies of Individual Muscles</td>
<td>64</td>
</tr>
<tr>
<td>Cellular Stress Response</td>
<td>65</td>
</tr>
<tr>
<td>Techniques to Assess the Mechanisms of Muscle Damage</td>
<td>66</td>
</tr>
<tr>
<td>Models of Muscle Damage</td>
<td>66</td>
</tr>
<tr>
<td>Techniques to Show Changes in Muscle Calcium Content</td>
<td>66</td>
</tr>
<tr>
<td>Markers of Increased Free Radical Activity</td>
<td>67</td>
</tr>
<tr>
<td>Methods of Measuring Cellular Energy Levels</td>
<td>67</td>
</tr>
<tr>
<td>Conclusions</td>
<td>67</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>67</td>
</tr>
<tr>
<td>References</td>
<td>68</td>
</tr>
</tbody>
</table>
B: METHODS TO ASSESS PAIN, IRRITATION, AND MUSCLE DAMAGE FOLLOWING INJECTIONS

4. In Vitro Methods for Evaluating Intravascular Hemolysis 77

Joseph F. Krzyzaniak and Samuel H. Yalkowsky

Significance 78

In Vitro Methods for Evaluating Hemolysis 79

Static Methods 81

Dynamic Methods 82

Comparison of In Vitro and In Vivo Hemolysis Data 85

Summary of In Vitro Methods 86

References 87

5. Lesion and Edema Models 91

Steven C. Sutton

Edema and Inflammation 91

Lesion Models 92

Rabbit 92

Mice 96

Rat 96

Biochemical Models 97

Serum Glutamic-Oxaloacetic Transaminase 97

N-Acetyl-β-Glucosaminidase 97

Myeloperoxidase 97

Creatine Kinase 98

Edema Models 105

Inducing Edema 105

Exudative Models of Inflammation 105

Vascular Permeability Models 105

Footpad Edema Models 106

Correlation of Models 107

Rabbit Lesion Versus Rabbit Hemorrhage Score Model 107

Rabbit Lesion Versus Rabbit CK Model 108

Rabbit Lesion Versus Rat Footpad Edema Model 109

Rabbit Lesion Versus Rat CK Model 109

Rat and Human 110
Injectable Drug Development

Models for Extended-Release Formulations 110

Predicting Muscle Damage from Extended-Release Formulations 111

Future Directions 112

Muscle Damage and CK 112
Gamma Scintigraphy 112
Electron Parametric Resonance and Nuclear Resonance Imaging 112
Effect of Edema and Lesion on Bioavailability 113

Conclusions 114
References 115

6. Rat Paw-Lick Model 119

Pramod K. Gupta

Methodology 120
Correlation Between Rat Paw-Lick and Other Pain/Irritation Models 120
Application of Rat Paw-Lick Model to Screening Cosolvent-Based Formulations 123
Limitations of the Rat Paw-Lick Model 126
Concluding Remarks 128
References 128

7. Radiopharmaceuticals for the Noninvasive Evaluation of Inflammation Following Intramuscular Injections 131

Agatha Feltus, Michael Jay, and Robert M. Beihn

Gamma Scintigraphy 132
Gamma Cameras 132

Detectors 133
Collimators 135
Electronics and Output 136
Computers 137
Tomographic Imaging 139
Quality Control 139

Radionuclides and Radiation 140
Scintigraphic Detection of Inflammation 141
Contents

Gallium-67 141
Radiolabeled Leukocytes 143
Radiolabeled Antibodies 145
Other Radiopharmaceuticals 147

Summary 148
References 149

8. A Primer on In Vitro and In Vivo Cytosolic Enzyme Release Methods 155
Gayle A. Brazeau

Rationale for Utilizing Release of Cytosolic Components as a Marker of Tissue Damage 157
Experimental Models 159
Isolated Rodent Skeletal Muscle Model 159
General Experimental Overview 159
Isolation, Extraction, and Viability of Isolated Muscles 160
Muscle Exposure to the Test Formulation 162
Incubation Media 164
Cytosolic Enzymes Utilized in Isolated Muscle Studies 164
Controls and Data Analysis 164

Muscle Cell Culture Methods to Evaluate Muscle Injury 165
General Considerations 165
General Considerations in the Optimization of Experimental Cell Culture Systems 166
Selected Cell Lines in Screening for Drug-Induced Toxicity 168

In Vivo Enzymatic Release Methods 169
General Considerations 169
Animal Models 170
Quantification of Tissue Damage 171

Conclusions 172
Acknowledgments 173
References 173

9. Histological and Morphological Methods 177
Bruce M. Carlson and Robert Palmer

Basic Principles Underlying Morphological Analysis 179
Techniques of Morphological Analysis 180
Electron Microscopic Methods 180
Histological Methods 183
Histochemical Methods 185
Immunocytochemical Methods 187
Neuromuscular Staining Methods 189

Summary of Strengths and Limitations of Morphological Techniques in Assessing Muscle Damage After Injections 190

References 191

10. Conscious Rat Model to Assess Pain Upon Intravenous Injection 193

John M. Marcek

Experimental Procedures 195

Experiment 1 196
Experiment 2 197
Experiment 3 197
Experiment 4 197
Experiment 5 197
Experiment 6 197
Experiment 7 198

Statistical Analyses 198

Results 198
Discussion 204
Applications 209
Summary and Conclusions 210
Acknowledgments 211
References 211

C: APPROACHES IN THE DEVELOPMENT OF LESS-PAINFUL AND LESS-IRRITATING INJECTABLES

11. Cosolvent Use in Injectable Formulations 215

Susan L. Way and Gayle Brazeau

Commonly Used Solvents 218

Polyethylene Glycols 219
Propylene Glycol 223
Ethanol 225
Glycerin 226
Cremophors 227
Benzyl Alcohol 228
Amide Solvents 230
Dimethylsulfoxide 232
Hemolytic Potential of Solvents/Cosolvents 233

In Vitro/In Vivo Hemolysis Comparisons 237
Muscle Damage 242
Cosolvent-Related Pain on Injection 245
Cosolvents Known to Cause Pain 245
Methods to Minimize Pain 247
Conclusions 250
References 251

12. Prodrugs 267

Laszlo Prokai and Katalin Prokai-Tatrai

Design of Prodrugs 267
Specific Examples of Prodrugs Developed to Improve Water Solubility of Injectables 273
Anticancer Agents 273
Central Nervous System Agents 283
Other Drugs 288
Conclusions 295
References 297

13. Complexation—Use of Cyclodextrins to Improve Pharmaceutical Properties of Intramuscular Formulations 307

Marcus E. Brewster and Thorsteinn Loftsson

Cyclodextrins 308
Preparation of Cyclodextrin Complexes 312
Characterization of Cyclodextrin Complexes 313
Use of Cyclodextrins in IM Formulations 319
Methodologies 319
IM Toxicity of Cyclodextrins and Their Derivatives 320
Use of Cyclodextrins to Replace Toxic Excipients in IM Formulations 323
Use of Cyclodextrins to Reduce Intrinsic Drug-Related Toxicity 326
14. **Liposomal Formulations to Reduce Irritation of Intramuscularly and Subcutaneously Administered Drugs**

Farida Kadir, Christien Oussoren, and Daan J. A. Crommelin

Liposomes: A Short Introduction 338
Liposomes as Intramuscular and Subcutaneous Drug Delivery Systems 340
Studies on Reduction of Local Irritation 341
 Studies on the Protective Effect After Intramuscular Administration 342
 Studies on the Protective Effect After Intradermal and Subcutaneous Administration 345
Discussion 349
Conclusions 350
References 351

15. **Biodegradable Microparticles for the Development of Less-Painful and Less-Irritating Parenterals**

Elias Fattal, Fabiana Quaglia, Pramod Gupta, and Gayle Brazeau

Rationale for Using Microparticles in the Development of Less-Painful and Less-Irritating Parenterals 356
Poly(Lactide-co-Glycolide) Microparticles as Delivery Systems in the Development of Less-Painful and Less-Irritating Parenterals 357
 Polymer Selection 357
 Microencapsulation Technique 360
 Drug Release 366
 Sterilization 368
 Residual Solvents 368
 Stability of the Encapsulated Drug and Microparticle Products 369
Protection Against Myotoxicity by Intramuscularly/Subcutaneously Administered Microparticles 370
Conclusions 371
References 372

16. Emulsions 379

Pramod K. Gupta and John B. Cannon

Rationale for Using Emulsions for Reducing Pain and Irritation upon Injection 380
Potential Mechanisms of Pain on Injection 381
Case Studies 382

Propofol (Diprivan®) 382
Diazepam 384
Etomidate 388
Pregnanolone (Eltanolone®) 388
Methohexital and Thiopental 389
Amphotericin B 390
Clarithromycin 391

Challenges in the Use of Emulsions as Pharmaceutical Dosage Forms 393

Physical Stability 393
Efficacy 393
Dose Volume 394
Other Issues 394

Conclusions 395
References 395

D: Future Perspectives in the Development of Less-Painful and Less-Irritating Injectables

17. Formulation and Administration Techniques to Minimize Injection Pain and Tissue Damage Associated with Parenteral Products 401

Larry A. Gatlin and Carol A. Gatlin

Formulation Development 402

Preformulation 402
Formulation 404
Focus on Osmolality, Cosolvents, Oils, and pH 410
pH 415