Krzysztof Czolczynski

Rotordynamics of Gas-Lubricated Journal Bearing Systems

With 90 Illustrations
Contents

Series Preface .. v
Preface .. vii
Introduction ... 1

Part I Theory

1. Mathematical Model of a Gas Journal Bearing 11
 1.1. Reynolds Equation 14
 1.2. Numerical Solution of the Reynolds Equation 15
 1.3. Equations of Mass Flow through Feeding System 18
 1.4. "Orbit" Model of Gas Bearing 22

2. Identification of Stiffness and Damping Coefficients 25
 2.1. Free Vibrations 26
 2.2. Step-Jump 27
 2.3. Harmonic Forcing 27
 2.4. Harmonic Motion of the Shaft 31
 2.4.1. Accuracy of the Method 37
 2.4.2. Estimation of the Coefficients for any Λ and v – Interpolation 41

 3.1. Equations of Motion – Symmetrical System 49
 3.2. Reduced System 54
 3.3. Method of Calculation of Eigenvalues 57
 3.4. Equations of Motion – Unsymmetrical System 58
Part II Applications

4. Gas Bearings ... 63
 4.1. Static Characteristics of Gas Bearings 64
 4.2. Stiffness and Damping Coefficients of Gas Bearings 66
 4.2.1. Self-Acting Bearings 66
 4.2.2. Bearings with the Direct Feeding System 66
 4.2.3. Bearings with the Chamber Feeding System 79
 4.2.4. Conclusions ... 79

5. Stability of Rotor - Gas Bearing System 83
 5.1. Stability of Rotor with Unmovable Bushes 83
 5.2. Stability of Rotor with Elastically Mounted Bushes - Symmetrical (Reduced) System 85
 5.2.1. How to Design the Rotor Support 93
 5.3. Stability of Unsymmetrical Rotor with Elastically Mounted Bushes 96
 5.3.1. Stability of the Homogeneous Shaft Supported in Two Bearings 96
 5.3.2. Stability of the Rotor with Concentrated Mass of the Shaft 98
 5.3.3. Stability of the Unsymmetrical Rotor with the Unsymmetrical Support of the Bushes 101
 5.3.4. An Influence of the Mass of the Bushes on the Size of Always-Stable Loops 104

6. Air Rings .. 105
 6.1. Air Rings with the Direct Feeding System 105
 6.2. Air Rings with the Chamber Feeding System 112
 6.2.1. Air Hammer ... 113
 6.2.2. Stiffness and Damping Coefficients of Air Rings ... 116

7. Stability of the Rotor - Bearing - Air Rings System (Applications) 125
 7.1. Application 1 .. 126
 7.2. Application 2 .. 129
 7.3. Application 3 .. 132
 7.4. Application 4 .. 135

References ... 141

Notation .. 147

Index ... 151