Control of Particulate Matter Contamination in Healthcare Manufacturing

Thomas A. Barber

Interpharm Press
Denver, Colorado
CONTENTS

PREFACE xi

1. INTRODUCTION AND OVERVIEW 1

 Environmental Particles 2
 Physiologic Effects of Environmental Particulate Matter 3
 Circulatory Transport and Particle Removal 5
 Particles and Patients 7
 Animal Studies 9
 Particle Contaminants in Manufacturing 12
 Classification and Sources of Particulate Matter 12
 Containers and Closures 13
 The IV Therapy Process 14
 Use of In-Line Filters 17
 Detection and Counting of Particles 17
 Subvisible Particle Detection 18
 Particle Control—Standards or GMP? 20
 Standards for Medical Devices 21
 Summary 22
 References 24
The USP <788> Microscopic Test 114
Summary of Microscopic Test 126
Summary 127
Bibliography 129
Appendix I: Vendor and Equipment Information 130
 Particle Counters 130
 Calibration Materials 130
 Light Microscopes 130
 Microfiltration Supplies 131
 Cleanroom Supplies 131
Appendix II: Manufacturers of “USP” Type Circular Area Graticule 131
Appendix III: Sampling Plans 132
 Assay Variability 132
 Sampling Plans 134

5. ENVIRONMENTAL STANDARDS, MANUFACTURING OPERATIONS, AND GOOD MANUFACTURING PRACTICE 139
International Standards for Cleanroom Classification 139
 ISO Document Levels 140
Philosophy of Compliance 143
 The United Kingdom—Complexities in Compliance 145
 Environmental Monitoring and GMP in the United States 145
International Standards 150
 International GMP Documents 151
 The European Community (EC, EEC, EN) GMPs 153
 Standards for General Application: FS-209E 157
 ISO International Standard 14644-1 167
Summary and Conclusion 183
References 184
Appendix I: Good Manufacturing Practice—Related Documents 185
Appendix II: International Contamination Control Standards 186
 Contamination Control Documents from the United States 186
 Contamination Control Documents from Australian Agencies 187
 Contamination Control Documents from Belgian Agencies 189
 Contamination Control Documents from Canadian Agencies 189
 Contamination Control Documents from Chinese Agencies 189
 Contamination Control Documents from English Agencies 189
 Contamination Control Documents from French Agencies 191
 Contamination Control Documents from German Agencies 191
 Contamination Control Documents from Japanese Agencies 191
 Contamination Control Documents from Swedish Agencies 192
 Contamination Control Documents from Swiss Agencies 192
6. REGULATORY PERSPECTIVES RELATED TO THE CONTROL OF PARTICULATE MATTER CONTAMINATION

The FDA

 FDA Concerns with Regard to Particulate Matter

Current Good Manufacturing Practices

Current Regulatory Interests—Drugs and Injectable Products

Current Regulatory Interests—Devices

Environmental Monitoring

Visual Inspection

Quality Control Lab Practice in Particulate Matter Analysis

Preparation for FDA Inspections

Focus of Regulatory Inspections (Subjects for Questions)

 Particulate Matter as a Process Indicator
 Airborne Particulate Matter Monitoring
 Garbing and Personnel Protection
 Medical Devices
 Product Complaints
 Compliance with USP <788> for Solutions
 Visual Inspection
 Overall Response to In-House Particulate Matter Issues
 Liquid Filtration
 Facility Review
 Record Keeping

Inspectional Observations

 Manufacturing Operations
 Personnel Protection
 Laboratory Practice
 Training
 Visual Inspection
 Filter Testing

Summary and Conclusions

References

Compendial Documents

FDA Documents

7. VISUAL INSPECTION OF INJECTABLES AND DEVICES

Visible Particulate Matter as a Quality Attribute

General Considerations in Visual Inspection

 Repeatability of Manual Inspection
 Variables in Human Visual Inspection
 The Probabilistic Detection Principle (Knapp et al.)
 Detection of Particles in Translucent Containers
Contents

Methods of Manual Inspection 250
Applications of Visual Inspection 254

Automated (Machine) Inspection 255

“Essentially Free”—The Concept and the Compendium 261
 Defining “Essentially Free” 263
 Evaluation of Process Capability and Process Control 264
 Compendial Allowances for Particulate Matter 264
 Definition of Allowable Particulate Matter 265
 Best Demonstrated Practice 266

Design of Inspection Methods 266

FDA Expectations for Visual Inspection 268

Visible Particles as Attributes Versus Variables 270

Visual Inspection of Medical Devices 271

Summary 272

References 273

8. LIGHT EXTINCTION PARTICLE COUNTING OF LIQUIDS 275

The USP <788> Method 276

Light Obscuration Sensors 277
 Principles of Operation 277
 Sensor Construction and Function 279
 Laser Versus White Light Obscuration Sensors 282
 Refractive Index Dependency of the LO Measurement 286
 Coincidence Counting 287

“Validation” and “Count Accuracy” 291

Resolution Effects 291
 Sources of Erroneous Count Data 292
 Variability Due to Sampling Effects 296
 Issues Relating to Nonaqueous Vehicles, Color, and Viscosity 296
 Interferences from Subcountable-Sized Particles 298
 Intermittent Instrument Problems 299

Light Obscuration Count Data 300
 Dry Powder Dosage Forms 300
 Amorphous Material 301
 Sample Pooling 302
 Data Variability Versus Sample Volume 302
 User Interpretation of Complex Light Obscuration Count Data 303
 Changes in Calibration Points—Threshold Shift 306

Error Sources Checklist 307
 Laboratory Technique 308
 Cleaning of Glassware 308
 Sampling of Injectable Products 310
Using Particle Size Standards 311
Current Generation Light Obscuration Counters 313
Summary 314
References 315

9. AIRBORNE PARTICLE COUNTING AND ENVIRONMENTAL MONITORING 319
Mechanisms of Airborne Particle Detection 322
Types of Scattering
 Lower Detection Limits of Light-Scattering Instruments 326
Optical Particle Counters
 Light Sources 331
 Function of Collector Optics 331
 Calibration 331
Particle Transport and Sample Acquisition
 Transport of Particles in Tubing 337
Monitoring Methods 340
Remote Systems Analysis—General
 Cost Considerations: Manual Versus Automated Monitoring 344
 Validation of Remote Sampling or Counting 344
Selection of Sampling Plans 346
Numerical Evaluation of Count Data (Bzik 1988, 1994) 349
Sampling of Compressed Gases
 Vapors as a Source of Artifactual Counts 357
Large Particle Monitoring 357
Personnel Monitoring 357
Summary 359
References 360

10. LIGHT MICROSCOPY 363
The Power of Visual Observation 365
The Light Microscope
 Stereomicroscopes 366
 The Compound Microscope 367
Microscopic Visual Descriptors (Morphology)
 Particle Size 373
 Shape 374
 Particle Color 374
 Refractive Index 376
 Reflectivity 376
 Crystals and Crystal Morphology 377
 Fibers 379
Contents

Biologicals 380
Other Morphologically Distinct Particles 382

Polarized Light Microscopy 383
Polarization 383
Interference 383
Construction of the Polarizing Light Microscope 383
Illumination in Polarized Light Microscopy 386
Particle Identification with Polarized Light Microscopy 387
Definitions 389

Morphology and Particle Identification 390
Anisotropic Substances 390
Identification by Refractive Index 390
Dispersion Staining 392
Microchemical and Microphysical Tests 393
Characterization and Sourcing of Mixed Particle Populations 397

Microscope Calibration 398
Isolation and Handling of Particles 399
Summary 399
References 399
Specifications and Standards 401

Appendix:
Descriptions of Photomicrographs of Commonly Encountered Particulate Matter 402
1. Insect Parts 402
2. Rust (Iron Oxide) 403
3. Cosmetic Residue: Talc (Magnesium Aluminum Silicate) and Skin Cells 403
4. Starch 403
5. Paper Fragments 403
6. Teflon® (DuPont) Flakes 403
7. Stopper Fragments (Black Chlorobutyl Rubber) 404
8. Stainless Steel 404
9. Polyethylene (cutting fragment) 404
10. Calcium Carbonate 404
11. Magnesium Phosphate 404
12. Corn Starch 404
13. Filter Membrane Fragments 404
14. Dandruff 405
15. Drug Residue 405
16. Diatoms 405
17. Fungal Hyphae 405
18. Amorphous Material (Drug Residue) 405
19. Hair (Human, Caucasian) 405
20. Rat Hair 406
21. Paper (Coarse, Hardwood) 406
22. Cotton 406
23. Paper and Cotton Mixed 406
11. VALIDATION AND ITS APPLICATION TO PARTICLE COUNTING INSTRUMENT SYSTEMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Terminology</td>
<td>410</td>
</tr>
<tr>
<td>Validation: The Compendial Information</td>
<td>412</td>
</tr>
<tr>
<td>The Literature</td>
<td>413</td>
</tr>
<tr>
<td>To Validate or Not to Validate</td>
<td>415</td>
</tr>
<tr>
<td>FDA Perspectives and Enforcement Activity</td>
<td>416</td>
</tr>
<tr>
<td>The Process of Validation (Chamberlain 1991)</td>
<td>417</td>
</tr>
<tr>
<td>Timing of Validation Activity</td>
<td>418</td>
</tr>
<tr>
<td>The Components of Validation</td>
<td>418</td>
</tr>
<tr>
<td>Risk Assessment (Validation Rationale)</td>
<td>419</td>
</tr>
<tr>
<td>Requirements Definition</td>
<td>419</td>
</tr>
<tr>
<td>Vendor Qualification</td>
<td>419</td>
</tr>
<tr>
<td>Design Qualification</td>
<td>421</td>
</tr>
<tr>
<td>Installation Qualification</td>
<td>421</td>
</tr>
<tr>
<td>Validation Plan (Test Plan)</td>
<td>422</td>
</tr>
<tr>
<td>System Suitability Testing</td>
<td>422</td>
</tr>
<tr>
<td>Execution of System Testing</td>
<td>423</td>
</tr>
<tr>
<td>Maintenance/Change Control</td>
<td>424</td>
</tr>
<tr>
<td>System Security</td>
<td>425</td>
</tr>
<tr>
<td>The Validation Report—Certification</td>
<td>427</td>
</tr>
<tr>
<td>Extent of Validation</td>
<td>427</td>
</tr>
<tr>
<td>How Much Validation Is Enough?</td>
<td>428</td>
</tr>
<tr>
<td>Regulatory Inspections</td>
<td>428</td>
</tr>
<tr>
<td>Specific Considerations in Light Obscuration Counting</td>
<td>432</td>
</tr>
<tr>
<td>System Validation for Particle Counting Systems</td>
<td>434</td>
</tr>
<tr>
<td>Vendor Support for Validation Activities</td>
<td>436</td>
</tr>
<tr>
<td>Application of In-Use Standards and Operational/Performance Qualification Tests</td>
<td>436</td>
</tr>
<tr>
<td>Data Integrity</td>
<td>437</td>
</tr>
<tr>
<td>Analyst Training</td>
<td>438</td>
</tr>
<tr>
<td>Requirements Definition</td>
<td>438</td>
</tr>
<tr>
<td>System Testing</td>
<td>438</td>
</tr>
<tr>
<td>System-Specific Validation Approaches</td>
<td>438</td>
</tr>
<tr>
<td>User Testing of APSS 200™ and 9703 Systems</td>
<td>445</td>
</tr>
</tbody>
</table>
12. SAMPLING AND COLLECTION OF PARTICULATE MATTER FOR ANALYSIS

Theory of Particle Sampling and Collection

Sampling Guidelines
- Sample Protection
- Sample Container Cleaning

Methods of Collection/Isolation
- Direct Isolation and Manipulation of Particles
- Filtration
- Collection of Particles from Surfaces
- Adhesion and Entrainment

Sedimentation Techniques
- Inertial Collection
- Sieving
- Chemical Isolation Technique

Sampling of Device Parts or Container Components
Sampling of Cleanroom Garments
On-line Sampling
Powder Sampling

Summary

References

Specifications and System Standards

13. APPLICATION AND IN-USE TESTING OF HEPA FILTERS

Principles of HEPA Filtration

Definitions of a “Leak”

In-Use Testing of HEPA Filters

Testing with Polydisperse Dioctyl Phthalate and Other Oils

Photometer Technology

Additional Considerations in the Use of Cold DOP Challenge
- Potential Safety Hazards of DOP
- Test Aerosol Concentration

Variables in Leak Detection (McDonald 1993, 1994a, 1994b)

Alternate Means of Filter Testing in the Pharmaceutical Industry
- Laser Submicrometer Particle Counters in Leak Testing
- Substitute Oil Challenge Materials
APPENDIX 1: SOURCES OF STANDARDS AND DOCUMENTS

APPENDIX 2: TRADEMARKS

INDEX