CONTENTS

Preface xvii

1 The Carbon Cycle 1

Global Aspects, 2
Organic Constituents of Soil, 5
 Nonhumic Substances, 5
 Lipids, 6
 Carbohydrates, 6
 Proteinaceous Constituents, 7
Humic Substances, 7
 Extraction and Fractionation, 7
 Humic Substances as a System of Polymers, 8
Biochemistry of Humus Formation, 10
Chemical Properties and Structures of Humic and Fulvic Acids, 15
Use of 14C in Soil Organic Matter Studies and Biodegradation Research, 16
Techniques and Approaches in 14C Studies, 17
 Preparation of 14C-Labeled Plant Material, 18
 Laboratory Incubations, 18
 Field Experiments, 18
 Degradation of Simple Substrates and Synthesis of Labeled Microbial Components, 19
Decay of 14C-Labeled Plant Residues, 22
Field Trials with 14C-Labeled Plant Residues, 23
Incorporation of 14C into Soil Organic Matter Components, 25
The Priming Action, 25
14C Dating of Soils, 27
Principles of 14C Dating, 27
Mean Residence Time (MRT) of Soil Organic Matter, 28
Absolute Ages of Buried Soils, 30
In Situ Labeling of Soil Organic C from Bomb-Derived 14C–CO$_2$, 31
Use of 13C and the 13C/12C Ratio, 33
Transformations in Waterlogged Soils and Sediments, 34
Protein Degradation, 36
Cellulose Degradation, 37
Lignin Modification, 37
Preservation of Other Plant Components, 37
Oxidation–Reduction Reactions, 38
Changes in Soils and Sediments During Submergence, 38
Nitrogen Transformations, 39
Summary, 40
References, 41

2 Soil Carbon Budgets and Role of Organic Matter in Soil Fertility

Factors Affecting Levels of Organic C in Soils, 47
The Time Factor of Soil Formation, 47
Effect of Climate, 50
Vegetation, 53
Parent Material, 55
Topography, 55
Effect of Cropping on Soil Organic Matter Levels, 56
Historical Aspects, 56
Maintenance of Soil Organic Matter (C), 62
Paleohumus, 64
Role and Function of Soil Humus, 65
Nutrient Availability, 66
The C/N/P/S Ratio, 67
Indirect Nutrient Effects, 68
Source of Energy for Soil Organisms, 68
Growth of Higher Plants, 69
Soil Physical Condition, 69
Soil Erosion, 70
Buffering and Exchange Capacity, 70
CONTENTS

Health Effects, 70
Miscellaneous Effects, 70
Organic Matter and Sustainable Agriculture, 71
Commercial Humates as Soil Amendments, 71
Origin and Nature of Commercial Humates, 71
Chemical Properties and Agricultural Value of Lignite
Humic Acids, 72
Summary, 74
References, 74

3 Soil Organic Matter Quality and Characterization 78

Pools of Organic Matter, 78
Litter, 79
Light Fraction, 80
Microbial Biomass, 81
Estimates from Microbial Counts, 81
Chemical Methods, 82
Fumigation Method, 83
Extraction Method, 84
Faunal Biomass, 85
Belowground Plant Constituents, 85
Water-Soluble Organics, 86
Stable Humus, 87
Soil Enzymes, 87
Simulation Models, 89
Physical Fractionation of Organic Matter, 92
Instrumental Methods for Determining Organic Matter
Quality, 93
Nuclear Magnetic Resonance Spectroscopy (NMR), 93
Brief Theory of NMR Spectroscopy, 94
Assignment of Chemical Shift Zones, 95
Limitations for Direct Analysis of Soils, 96
Analytical Pyrolysis, 99
Summary, 100
References, 100

4 Environmental Aspects of the Soil Carbon Cycle 107

Disposal of Organic Waste Products in Soil, 108
Specific Problems, 109
Contamination of Lakes and Streams with Organics, 111
Buildup of Toxic Metals, 112
Biological Pollutants, 114
Enrichment of Surface and Ground Water with
Nutrients, 115
Soluble Salts, 117
5 The Nitrogen Cycle in Soil: Global and Ecological Aspects 139

Geochemical Distribution of N, 141
 Origin of Soil N, 141
 Nitrogen in the Hydrosphere, 142
 Nitrogen in the Biosphere, 142
Reservoirs of N for the Plant–Soil System, 143
Nitrogen as a Nutrient, 145
 Assimilative Nitrate Reduction, 146
 Nitrogen Requirements of Plants, 147
Gains in Soil N Through Biological N₂ Fixation, 148
 Cyanobacteria, 152
 Free-Living Bacteria, 153
 Symbiotic N₂ Fixation by Leguminous Plants, 156
 Microorganisms Living in Symbiosis with Nonleguminous Plants, 160
 Future Trends in Biological N₂ Fixation, 162
Atmospheric Deposition of Combined N, 163
Nitrogen Losses from Soil, 164
 Bacterial Denitrification, 166
 Chemodenitrification, 172
 Reactions of Nitrite with Humic Substances, 173
 Classical Nitrite Reactions, 173
 Ammonia Volatilization, 175
 Leaching, 178
 Erosion and Runoff, 179
 Loss of N from Plants, 179
Flux of Soil N with Other Ecosystems, 180
Summary, 181
References, 183
6 The Internal Cycle of Nitrogen in Soil

Biochemistry of Ammonification and Nitrification, 192
Ammonification, 193
 Breakdown of Proteins and Peptides, 193
 Degradation of Nucleic Acids, 194
 Decay of Amino Sugars, 194
Urease in Soil, 194
Nitrification, 195
 Pathway of Nitrification, 195
 Isolation of Nitrifying Microorganisms, 197
 Factors Affecting Nitrification, 197
 Heterotrophic Nitrification, 198
Net Mineralization vs. Net Immobilization, 198
 The C/N Ratio, 199
 Mineralization and Immobilization Rates, 201
 Transformations in Sediments, 201
 Wetting and Drying, 202
Mineral N Accumulations, 202
Nitrogen Availability Indexes, 204
 Residual NO\texttextsuperscript{-3} in the Soil Profile, 205
 Incubation Methods, 205
 Chemical Methods, 206
Stabilization and Composition of Soil Organic N, 207
 The Humification Process, 207
 Chemical Distribution of the Forms of Organic N in Soils, 208
 Application of 15N-NMR Spectroscopy, 212
Nonbiological Reactions Affecting the Internal N Cycle, 214
 Ammonium Fixation by Clay Minerals, 214
 Biological Availability of Fixed NH+4, 215
Ammonium-Fixing Capacity, 215
 Type of Clay Mineral, 215
 Potassium Status of the Soil, 215
 Concentration of NH+4, 216
 Moisture Conditions, 216
 Soil pH, 216
Naturally Occurring Fixed NH+4, 217
Fixation of NH\textsubscript{3} by Organic Matter, 218
Mechanisms of NH\textsubscript{3} Fixation, 220
Availability of Chemically Fixed NH\textsubscript{3} to Plants, 222
Nitrite–Organic Matter Interactions, 222
Modeling of the Soil N Cycle, 222
Summary, 225
References, 226
7 Dynamics of Soil N Transformations as Revealed by 15N Tracer Studies

Nitrogen Isotope Techniques, 230
Assumptions, 231
Steps in the Determination of Isotopic 15N, 231
Isotope-Ratio Analysis by Mass Spectrometry, 232
Nitrogen Balance Sheets, 236
Efficiency of Fertilizer N Use by Plants, 238
Influence of Fertilizer N on Uptake of Native Soil N, 239
Losses of Fertilizer N through Leaching and Denitrification, 240
Composition and Availability of Immobilized N, 242
Microbial Biomass N, 242
Nature of Newly Immobilized N, 244
Availability of Residual Fertilizer N, 246
Chemical Characteristics of Residual Fertilizer N, 246
Long-Time Effects, 247
Labeled Biologically Fixed (Legume) N, 248
Humus as a Source of N, 249
Natural Variations in 15N Abundance, 251
Summary, 253
References, 254

8 Impact of Nitrogen on Health and the Environment

Health Aspects, 257
Methemoglobinemia, 259
Stomach Cancer, 260
Other Effects, 260
Nitrate in Water Supplies, 260
Factors Affecting NO3− Levels in Natural Waters, 261
Management of Fertilizer N for Minimal Pollution and Maximum Efficiency, 263
Nitrate in Wells, 268
Nitrate in Animal Feed, 269
Nitrate in Food Crops, 270
Possible Connection Between Fertilizer N and Ozone Depletion, 270
Eutrophication, 274
Ecosystem Damage Due to Acid Rain, 275
Formation of Nitrosamines, 275
Summary, 277
References, 277
9 The Phosphorus Cycle

Global Aspects of the P cycle, 280
 Chemical Properties of Soil P, 281
 Origin of P in Soils, 282
 Reserves of Mineable Phosphate Rock, 283
 Phosphorus Content of Soils, 284
 Effect of Cropping and Fertilization on Soil P, 285
Phosphorus as a Plant Nutrient, 288
Environmental Impact of Soil P, 290
Chemistry of Soil P, 292
 Chemical Fractionation Schemes, 293
 Fractionations Based on Biological Availability, 294
 Phosphate Fixation, 295
 Water-Soluble P, 298
Organic Forms of Soil P, 300
 Determination of Organic P, 300
 Organic P Content of Soils, 301
 The C/N/P/S Ratio, 303
 Specific Organic P Compounds, 304
 Inositol Phosphates, 305
 Nucleic Acids, 307
 Phospholipids, 307
Application of 31P–NMR Spectroscopy, 308
Phosphorus in the Soil Microbial Biomass, 309
 Calculations Based on Cell Mass, 310
 The Fumigation Method, 310
 Adenosine Triphosphate (ATP), 311
 Phospholipid Analysis, 312
Soil Tests for Available P, 313
 Phosphorus Soluble in Water, 313
 Phosphorus Extractable with Dilute Acid-Fluoride
 (HCl·NH$_4$F), 313
 Phosphorus Soluble in NaHCO$_3$, 314
 Phosphorus Soluble in NH$_4$HCO$_3$-DTPA, 314
 Phosphorus Soluble in Dilute HCl:H$_2$SO$_4$, 314
 Isotopic Dilution of 32P, 314
 Other Approaches, 315
General Observations Regarding Soil P Tests, 315
Microbial Transformations in the P Cycle, 315
 Mineralization and Immobilization, 316
 Phosphatase Enzymes in Soil, 318
 Role of Microorganisms in the Solubilization of Insoluble
 Phosphates, 318
Role of Mycorrhizal Fungi in the Phosphorus Nutrition of Plants, 321
Inoculation of Soil with “Phosphobacterin,” 323
Modeling of the Soil P Cycle, 323
Summary, 324
References, 325

10 The Sulfur Cycle 330

Biogeochemistry of the Global S Cycle, 332
 Chemical Properties of S, 333
 Origin of S in Soils, 334
 Sulfur Content of Soils, 334
Environmental Aspects of the S Cycle, 335
 Atmospheric Sulfur Dioxide, 335
 Leaching of Sulfate, 336
 Acid Sulfate Soils, 336
 Acid Mine Drainage and Mine Spoil Leachate, 337
Sulfur in Plant Nutrition, 337
Inorganic Forms of Soil S, 339
Organic Forms of Soil S, 340
 Determination of Organic S, 341
 The C/S Ratio, 341
 Chemical Fractionation of Organic S, 342
 Sulfur-Containing Amino Acids, 344
 Lipid S, 346
 Complex Forms of Organic S, 346
 Soluble Forms, 347
 Physical Fractionation, 348
Dynamics of Organic S Transformations, 348
 Factors Affecting the Turnover of Organic S, 349
 Biochemical Transformations of S-Containing Amino Acids, 352
 Microbial Biomass S, 352
 Arylsulfatase Enzymes in Soil, 353
 Use of 35S for Following Organic S Transformations, 354
 Formation of Volatile S Compounds, 356
 Determination of Plant-Available S, 356
Reduction of S, 357
Oxidation of S, 359
 Practical Importance in Soil, 360
 Species and Metabolism of S-Oxidizing Bacteria in Soil, 360
 General Observations on S Oxidation, 362
Summary, 363
References, 364

11 Micronutrients and Toxic Metals 369

Distribution of Trace Elements in Soils, 371
Forms of Trace Elements in Soil, 373
 Fractionation Schemes, 374
 Borate Complexes with Organic Matter, 376
Speciation of Trace Metals in the Soil Solution, 376
Reactions of Micronutrients with Soil Organic Matter, 379
 Significance of Complexation Reactions, 379
 Properties of Metal–Chelate Complexes, 380
Biochemical Compounds as Chelating Agents, 382
 Organic Acids, 384
 Sugar Acids, 385
 Amino Acids, 385
 Hydroxamate Siderophores, 386
 Phenols and Phenolic Acids, 386
 Polymeric Phenols, 386
 Miscellaneous Compounds, 387
Trace Metal Interactions with Humic and Fulvic Acids, 388
 Solubility Characteristics of Metal–Humate Complexes, 390
 Metal-Ion Binding Capacities, 392
 Effect of pH on Metal-Ion Complexation, 392
 Influence of Electrolytes, 392
Relative Importance of Organic Matter and Clay in Retention of Applied Trace Elements, 393
Reduction Properties, 393
Micronutrient-Enriched Organic Products as Soil Amendments, 394
Dynamics of Micronutrient Cycling by Plants and Microorganisms, 394
 Depletion of Soil Resources Through Cropping, 394
 Influence of Microorganisms, 395
Factors Affecting the Availability of Micronutrients to Plants, 397
 Soil Reserves, 397
 Organic Matter, 397
 pH and Oxidation State, 398
 Rhizosphere, 399
 Seasonal Variations, 399
Role of Organic Matter in the Formation of Spodosols, 399
Micronutrient Requirements of Plants, 401
Deficiency Symptoms and Geochemistry, 402
 Iron, 404
 Zinc, 405
 Manganese, 405
 Copper, 406
 Boron, 406
 Molybdenum, 407
 Cobalt, 407
General Observations, 407
Antagonistic Effects, 408
Trace Elements as Toxic Pollutants, 408
Specific Trace Elements, 410
 Cadmium, 410
 Copper, 410
 Lead, 411
 Mercury, 411
 Arsenic, 411
Soil and Plant Factors Affecting Behavior of Toxic Elements, 412
 Influence of Organic Matter in Ameliorating Al Toxicities, 413
Hyperaccumulation of Trace Elements by Plants, 413
Summary, 414
References, 414