Pharmaceutical Biotechnology
An Introduction for Pharmacists and Pharmaceutical Scientists

Edited by
Daan J.A. Crommelin (Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands) and
Robert D. Sindelar (Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, USA)

harwood academic publishers
Australia • Canada • China • France • Germany • India • Japan • Luxembourg • Malaysia
The Netherlands • Russia • Singapore • Switzerland • Thailand • United Kingdom
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>XIX</td>
</tr>
<tr>
<td>Contributors</td>
<td>XXI</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>XXIII</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>XXV</td>
</tr>
<tr>
<td>Chapter 1: Molecular Biotechnology</td>
<td>1</td>
</tr>
<tr>
<td>Wiel P.M. Hoekstra and Sjef C.M. Smeekens</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>The Cell</td>
<td>1</td>
</tr>
<tr>
<td>The Prokaryotic Cell</td>
<td>1</td>
</tr>
<tr>
<td>The Eukaryotic Cell</td>
<td>3</td>
</tr>
<tr>
<td>Gene Expression</td>
<td>3</td>
</tr>
<tr>
<td>DNA Replication</td>
<td>5</td>
</tr>
<tr>
<td>Transcription</td>
<td>5</td>
</tr>
<tr>
<td>Translation</td>
<td>8</td>
</tr>
<tr>
<td>Recombinant DNA Technology</td>
<td>8</td>
</tr>
<tr>
<td>DNA Transfer</td>
<td>11</td>
</tr>
<tr>
<td>DNA Sources</td>
<td>13</td>
</tr>
<tr>
<td>Synthetic DNA</td>
<td>13</td>
</tr>
<tr>
<td>cDNA</td>
<td>13</td>
</tr>
<tr>
<td>DNA Libraries</td>
<td>14</td>
</tr>
<tr>
<td>Production by Recombinant DNA Technology</td>
<td>14</td>
</tr>
<tr>
<td>Specific DNA Techniques</td>
<td>16</td>
</tr>
<tr>
<td>DNA Sequencing</td>
<td>16</td>
</tr>
<tr>
<td>DNA Hybridization</td>
<td>16</td>
</tr>
<tr>
<td>PCR Technology</td>
<td>17</td>
</tr>
<tr>
<td>Cell Cultures</td>
<td>18</td>
</tr>
<tr>
<td>Cultivation of Microbes</td>
<td>18</td>
</tr>
<tr>
<td>Animal Cell Cultures</td>
<td>20</td>
</tr>
<tr>
<td>Plant Cell Cultures</td>
<td>20</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td>21</td>
</tr>
<tr>
<td>Further Reading</td>
<td>22</td>
</tr>
<tr>
<td>Self-Assessment Questions</td>
<td>23</td>
</tr>
</tbody>
</table>
Chapter 2: Biophysical and Biochemical Analyses of Recombinant Proteins

Structure and Analyses of Proteins 27
William C. Kenney and Tsutomu Arakawa

Introduction 27

Protein Structure 27
Primary Structure 27
Secondary Structure 32
α-Helix 32
β-Sheet Structure 34
Loops and Turns 35

Tertiary Structure 35
Forces 37
Hydrophobic Interactions 37
Hydrogen Bonds 37
Electrostatic Interactions 37
Van der Waals Interactions 37

Hydration 37

Protein Folding 38
Techniques for Characterizing Folding 39

Protein Stability 40

Analytical Techniques 41
Blotting Techniques 41
Transfer of Proteins 41
Detection Systems 41
Immunoassays 43
ELISA 43

Electrophoresis 44
Polyacrylamide Gel Electrophoresis 45
Isoelectric Focusing 45
2-Dimensional Gel Electrophoresis 45
Detection of Proteins within Polyacrylamide Gels 45
Capillary Electrophoresis 45

Chromatography 46
Size Exclusion Chromatography 46
Reversed-Phase High Performance Liquid Chromatography 47
Hydrophobic Interaction Chromatography 47
Ion-Exchange Chromatography 48
Other Chromatographic Techniques 48

Bioassays 48
Mass Spectrometry 49

Concluding Remarks 49

Further Reading 50

Self-Assessment Questions 51
Chapter 3: Production of Biotech Compounds
Cultivation and Downstream Processing 53
Farida Kadir

Introduction 53
Cultivation 53
Expression Systems 53
Cultivation Systems 53
Medium 56
Contaminants 56
Viruses 57
Bacteria 58
Cellular DNA 58
Protein Contaminants 58
Downstream Processing 59
Introduction 59
Filtration/Centrifugation 60
Filtration 60
Centrifugation 61
Precipitation 61
Chromatography 61
Introduction 61
Chromatographic Stationary Phases 61
Adsorption Chromatography 63
Ion-Exchange Chromatography 63
(Immun)Affinity Chromatography 63
Hydrophobic Interaction Chromatography 64
Gel Permeation Chromatography 64
Expanded Beds 65
Issues to Consider in Production and Purification of Proteins 65
N- and C-Terminal Heterogeneity 65
Chemical Modification/Conformational Changes 66
Glycosylation 66
Proteolytic Processing 66
Protein Inclusion Body Formation 66
References 67
Self-Assessment Questions 70

Chapter 4: Formulation of Biotech Products, Including Biopharmaceutical Considerations 71
Daan J.A. Crommelin

Introduction 71
Microbiological Considerations 71
Sterility 71
Viral Decontamination 71
Pyrogen Removal 71
Excipients used in Parenteral Formulations of Biotech Products 72
Solubility Enhancers 72
Anti-adsorption and Anti-aggregation Agents 72
Chapter 5: Pharmacokinetics and Pharmacodynamics of Peptide and Protein Drugs

Rene Braeckman

Introduction 101
Elimination of Protein Therapeutics 102
Proteolysis 102
Renal Excretion and Metabolism 102
Hepatic Metabolism 104
Receptor-Mediated Elimination by Other Cells 104
Distribution of Protein Therapeutics 105
Pharmacodynamics of Protein Therapeutics 106
 Direct Effects 107
 Indirect Effects 108
 PK/PD Link Models 108
 Indirect Effect Models 109
 Complex PK/PD Models 111
 Dose-Response and Concentration-Response Curves 111
Protein Binding of Protein Therapeutics 112
Interspecies Scaling 114
Heterogeneity of Protein Therapeutics 115
Chemical Modifications of Protein Therapeutics 116
Immunogenicity 117
References 118
Self-Assessment Questions 121

Chapter 6: Additional Biotechnology-Related Techniques 123
Robert D. Sindelar

Introduction 123
Polymerase Chain Reaction 123
 Basic PCR Methodology 124
 Some Examples of Modified PCR and Related Methodologies 124
Genetically Engineered Animals 125
 Transgenic Animals 125
 Production of Transgenic Animals by DNA Microinjection and Random Gene Addition 126
 Production of Transgenic Animals by Homologous Recombination in Embryonic Stem Cells 129
 Protein Production in Transgenic Animals 129
 Examples of Transgenic Animal Models of Human Disease in Drug Discovery and Development 131
 Knockout Mice 131
 Transgenic Animal Patents 131
 Genetic Ablation 132
Protein Engineering 132
 Production of Engineered Proteins 132
 Site-Directed Mutagenesis 132
 Enzyme Engineering 133
 Fusion Proteins 133
 Antibody Engineering 134
 3-D Structures of Engineered Proteins: Protein X-Ray Crystallography, Nuclear Magnetic Resonance Spectroscopy and Protein Modeling 134
 Protein X-ray Crystallography 135
 Nuclear Magnetic Resonance (NMR) Spectroscopy 135
 Protein Modeling 136
Peptide Chemistry and Peptidomimetics 136
 Peptidomimetics 137
 "Pseudopeptide" Peptidomimetic Approach 138
 Conformationally-Constrained Peptides 138
 Rational Design of Peptidomimetics 139
Nucleic Acid Technologies 140
Oligonucleotides 142
 Biochemistry 142
 Physicochemical Properties of Oligonucleotides 143
 Chemistry and Modifications 143
Antisense Technology and Triplex Technology 143
 Normal Cell Activity: DNA Makes RNA Makes Protein 143
 Rationale for Antisense Technology 144
 Therapeutic Antisense Molecules 145
Triplex Technology 146
Aptamer Technology 146
Ribozymes 146
Catalytic Antibodies (Abzymes) 147
 Antibodies 147
 Catalysis 147
 Chemistry of Catalytic Antibodies 147
 Limitations 148
 Potential Pharmaceutical Uses 149
Glycobiology 149
 Basic Principles of Glycobiology 149
 Glycosylation and Biological Activity 150
 The Role of Glycosylation in Disease 151
 Cell Adhesion Molecules 151
 Integrins 151
 Selectins 152
Biosensors 152
The Impact of Biotechnology on Drug Discovery 154
 Overview 154
 In Vitro Screening 154
 Contributions of Biotechnology 154
 High-Throughput Screening (HTS) 154
 Combinatorial Chemistry 154
 Rational Drug Design 156
Concluding Remarks 156
Further Reading 157
References 157
Self-Assessment Questions 165

Chapter 7: Gene Therapy 167
 Abraham Bout

Introduction 167
 Ex Vivo versus In Vivo Gene Therapy 167
 Ex Vivo Gene Therapy 167
 In Vivo Gene Therapy 167
Potential Target Diseases for Gene Therapy 167
 Inherited Disorders 167
 Cancer 168
Gene Transfer Methods 171
Non-Viral Gene Transfer 171
 Methods of Non-Viral Gene Transfer 171
 Application of Non-Viral Gene Transfer 171
Gene Transfer Using Recombinant Viruses (Viral Vectors) 173
General Requirements 173
Retrovirus Vectors 173
Retrovirus Life Cycle 173
Recombinant Retrovirus 174
Application of Retroviral Vectors 175
Adenovirus Vectors 176
Adenovirus Life Cycle 176
Recombinant Adenoviruses 177
Application of Adenoviral Vectors 178
Adeno-Associated Virus Vectors 179
Replication of Wild-Type AAV 179
Recombinant Adeno-Associated Virus 180
Application of Adeno-Associated Viral Vectors 180
Clinical Studies 180
Pharmaceutical Production and Regulation 181
Concluding Remarks 181
Further Reading 181
References 182
Self-Assessment Questions 183

Chapter 8: Hematopoietic Growth Factors 185
Jeanne Flynn and Allen W. Rosman

Introduction 185
Definitions 185
Chemical Description 186
Chemical Properties of G-CSF and GM-CSF 186
Chemical Properties of Erythropoietin (EPO) 187
Chemical Properties of Other Hematopoietic Growth Factors 188
Pharmacology 188
In Vitro Activity 188
In Vivo Activity 191
Cellular Sources and Stimuli for Release 192
Physiologic Role of G-CSF and GM-CSF 192
Physiologic Role of EPO 192
Physiologic Role of Other Hematopoietic Growth Factors 193
Pharmaceutical Concerns 193
Status and Source of Hematopoietic Growth Factors 193
Storage and Stability 193
Pharmacokinetics 193
Pharmacodynamics 196
Clinical and Practice Aspects 198
Established Uses 198
Chemotherapy-Induced Neutropenia 200
Bone Marrow Transplantation 201
Peripheral Blood Progenitor Cell Transplantation 202
Severe Chronic Neutropenia 203
AIDS 203
Anemia 203
Future Uses 205
Disease-Related Cytopenia 205
Treatment-Related Cytopenia, Transplantation and Transfusion 205
Infectious Diseases 205
Chapter 9: Interleukins and Interferons 215

Joseph Tami

Cytokines 215

The Interleukins 215
Terminology 215
Overview of the Interleukins 216
Interleukin-1 216
Interleukin-2 217
Interleukin-3 217
Interleukin-4 217
Interleukin-5 217
Interleukin-6 217
Interleukin-7 217
Interleukin-8 217
Interleukin-9 through Interleukin-16 218
Interleukin-17 218
Commercially Available Interleukins 218
Introduction: Interleukin-2 218
Chemical Description of IL-2 218
Pharmacology of IL-2 218
Indication 218
Mechanism of Action 218
Biotransformation 218
Elimination 218
Pharmaceutical Concerns of IL-2 218
Clinical and Practice Aspects of IL-2 219

Interferons 219

α Interferon 219
Chemical Description of α Interferon Products 220
Pharmacology 220
Absorption 220
Time to Peak Concentration 220
Biotransformation 220
Onset of Action 220
Time to Peak Effect 220
Pharmaceutical Concerns of α Interferons 220
Clinical and Practice Aspects of α Interferons 221
Side Effects of α Interferons 221

β Interferon 222
Chemical Description of β Interferon Product 222
Pharmacology of β Interferon 222
Pharmaceutical Concerns of β Interferon 222
Clinical and Practice Aspects of β Interferon 222
γ Interferon 223

Chemical Description of γ Interferon Product 223
Pharmacology of γ Interferon 224

Absorption 224
Time to Peak Plasma Concentration 224
Peak Plasma Concentration 224
Pharmaceutical Concerns of γ Interferon 224
Clinical and Practice Aspects of γ Interferon 224

References 224
Self-Assessment Questions 226

Chapter 10:

Insulin 229
John M. Beals and Paul M. Kovach

Introduction 229
Chemical Description 229
Pharmacology and Formulations 232
Regular and Rapid-Acting Soluble Preparations 232
Intermediate-Acting Insulin Preparations 233
Long-Acting Insulin Formulations 234
Pharmaceutical Concerns 234
Chemical Stability of Insulin Formulations 234
Physical Stability of Insulin Formulations 235
Clinical and Practice Aspects 235
Vial Presentations 235
Injectors 236
Storage 236
Usage 236
Resuspension 236
Dosing 236
Extemporaneous Mixing 236
Acknowledgements 236
Further Reading 237
References 237
Self-Assessment Questions 239

Chapter 11:

Growth Hormones 241
Melinda Marian

Introduction 241
hGH Structure and Isohormones 241
Pharmacology 241
Growth Hormone Secretion and Regulation 241
Growth Hormone Biologic Actions 242
hGH Receptor and Binding Proteins 242
Molecular Endocrinology and Signal Transduction 242
Dosing Schedules and Routes 242
Pharmacokinetics and Metabolism 243
Protein Manufacture, Formulation and Stability 245
Clinical Usage 247
Growth Hormone Deficiency/Idiopathic Short Stature in Children 247
Turner Syndrome 247
Chapter 12: Vaccines

Wim Jiskoot, Gideon F.A. Kersten and E. Coen Beuvery

Introduction 255
Immunological Principles 255
 Introduction 255
 Humoral and Cell-Mediated Immunity 257
 Vaccine Design in Relation with the Immune Response 259
 Route of Administration 260
Conventional Vaccines 260
 Classification 260
 Live Attenuated Vaccines 260
 Non-Living Vaccines: Whole Organisms 262
 Non-Living Vaccines: Subunit Vaccines 262
 Diphtheria and Tetanus Toxoids 262
 Acellular Pertussis Vaccines 262
 Polysaccharide Vaccines 262
Modern Vaccine Technologies 263
 Genetically Improved Live Vaccines 263
 Genetically Attenuated Microorganisms 263
 Live Vectors 264
 Genetically Improved Subunit Vaccines 264
 Genetically Detoxified Proteins 264
 Proteins Expressed in Host Cells 264
 Recombinant Peptide Vaccines 266
 Anti-Idiotype Antibody Vaccines 266
 Synthetic Peptide-Based Vaccines 267
 Nucleic Acid Vaccines 268
Pharmaceutical Aspects 270
 Production 270
 Formulation 271
 Additives 271
 Adjuvants and Delivery Systems 271
 Combination Vaccines 272
 Characterization 272
 Storage 272
Regulatory and Clinical Aspects 272
Further Reading 273
References 274
Self-Assessment Questions 276
Chapter 13: Monoclonal Antibody-Based Pharmaceuticals
John R. Adair, Robert A. Zivin, Norberto A. Guzman and Khurshid Iqbal

Introduction 279
Antibody Structure 280
Development of Antibody-Based Therapeutics 282
 Antibody Binding Sites 282
 Antibody Humanization 282
 The Effector Element 283
 The Fc as Effector 283
 Non-Ig Effectors 284
Assembly and Production 284
(Pre)Formulation of Monoclonal Antibody-Based Pharmaceuticals 285
Appendices 285
References 285
Self-Assessment Questions 287

Chapter 13A: Monoclonal Antibody-Based Pharmaceuticals
OKT3 Clinical Usage 288
David S. Ziska

Indications 288
Clinical Experience 288
 Renal Allograft Acute Rejection Prophylaxis 288
 Renal Allograft Acute Rejection Treatment 288
 Other Applications 289
Safety 289
Concluding Remarks 289
References 289

Chapter 13B: The Pharmacodynamic Profile of Abciximab (ReoPro™) 291
Sven Warnaar and Robert Jordan

Introduction 291
Molecular Structure 291
Mechanism of Action 291
Clinical Pharmacology Studies 292
Key Clinical Efficacy Studies 292
Pharmacokinetics and Pharmacodynamics 293
 Pharmacodynamics of Platelet-Bound Abciximab 293
 Pharmacokinetics of Free Plasma Abciximab 294
Formulation and Dosage Information 294
References 295

Chapter 14: Recombinant Tissue-Type Plasminogen Activator and Factor VIII 297
Nishit B. Modi

Introduction 297
Tissue-Type Plasminogen Activator 297
 Introduction 297
 Structure 297
Chapter 15: Recombinant Human Deoxyribonuclease 307
Melinda Marian and Sharon Baughman

Introduction 307
Protein Chemistry and Structure 307
Pharmacology 307
 In Vitro Actions on Sputum 308
 In Vivo Actions of rhDNase on Sputum 309
Pharmacokinetics and Metabolism 310
Protein Manufacture and Formulation 310
Clinical Usage 310
 Indication and Clinical Dosage 310
 Clinical Experience 311
 Cystic Fibrosis 311
 Other Studies 311
 Safety Concerns 311
Concluding Remarks 312
Acknowledgements 312
Further Reading 312
References 312
Self-Assessment Questions 314

Chapter 16: Follicle-Stimulating Hormone (FSH) 315
Tom Sam and Willem de Boer

Introduction 315
Biological Role 315
Chemical Description 315
Production of Recombinant FSH 316
Isohormones 316
 Structural Characteristics 316
 Biological Properties of Recombinant FSH Isohormones 317
 Pharmacokinetic Behavior of Recombinant FSH Isohormones 317
Chapter 17: Dispensing Biotechnology Products
Handling, Professional Education and Product Information

Gary H. Smith and Peggy Piascik

Introduction 321
Pharmacist Reluctance 321
Types of Information Needed by Pharmacists 321
Sources of Information for Pharmacists 322
The Pharmacist and Handling of Biotech Drugs 322
Storage 323
Temperature Requirements 323
Storage in Dosing and Administration Devices 324
Storage in IV Solutions 325
Light Protection 326
Handling 326
Mixing and Shaking 326
Travel Requirements 327
Preparation 327
Administration 327
Routes of Administration 328
Filtration 328
Flushing Solutions 328
Outpatient/Home Care Issues 328
Patient Assessment and Education 328
Monitoring 328
Reimbursement 329
Educational Materials 329
Professional Services 329
Educational Materials for Health Professionals 329
Educational Materials for Patients 331
Toll-Free Access to Manufacturers’ Services 331
The Internet and Biotech Information 332
Concluding Remarks 332
Further Reading 332
References 332
Self-Assessment Questions 334

Chapter 18: Biotechnology Products in the Pipeline

Ronald P. Evens and Robert D. Sindelar

Introduction 337
Drug Development and Biotechnology 337
Time and Cost of Modern Drug Discovery 337
Techniques of Biotech Drug Discovery 338
Classes of Molecules Being Discovered and Studied through Biotechnology 339
Some Protein Pharmaceuticals in Development 341
 Colony-Stimulating Factors, Interferons and Interleukins 341
 Colony-Stimulating Factors 341
 Interferons 342
 Interleukins 342
 Liposomal IL-2 342
 Fusion Molecules 343
 Enzymes 343
 Clotting Factors 344
 Superoxide Dismutase 344
 Hormones, Erythropoietins and Growth Factors 344
 Thrombopoietin 344
 Neurotrophic Factors 345
 Other Growth Factors 347
 Vaccines 347
 Recombinant Soluble Receptors 348
 Monoclonal Antibodies 349
 Therapeutic Monoclonal Antibodies 350
 Diagnostic Monoclonal Antibodies 350
Some Nucleic Acid Therapies in Development 350
 Gene Therapy 350
 Antisense Oligonucleotides 351
Development of Adhesion Molecules, Glycoproteins, Carbohydrate-Based Pharmaceuticals and Other Products of Glycobiology 351
 Glycobiology 351
 Fibronectin and Fibronectin Receptor Antagonists 351
Concluding Remarks 351
Further Reading 352
References 352
Self-Assessment Questions 354

Index 357