CONTENTS

Foreword, xi

Preface, xiii

Chapter 1 Introduction, 1

1.1 A Brief Networking History, 2
1.2 The Need for Speed and Quality of Service, 10
1.3 Advanced TCP/IP and ATM Networks, 13
1.4 Outline of this Book, 16
Appendix 1A Internet and Web Resources, 18

PART ONE PROTOCOL AND NETWORK FUNDAMENTALS, 21

Chapter 2 Protocols and the TCP/IP Suite, 23

2.1 The Need for a Protocol Architecture, 24
2.2 The TCP/IP Protocol Architecture, 24
2.3 The OSI Protocol Architecture, 33
2.4 Internetworking, 35
2.5 Recommended Reading, 38
2.6 Problems, 40

Chapter 3 Data Networks, 43

3.1 Packet-Switching Networks, 43
3.2 X.25, 50
PART TWO HIGH-SPEED NETWORKS, 73

Chapter 4 Asynchronous Transfer Mode, 75

4.1 ATM Protocol Architecture, 76
4.2 ATM Logical Connections, 77
4.3 ATM Cells, 81
4.4 ATM Service Categories, 85
4.5 ATM Adaptation Layer, 89
4.6 Recommended Reading, 97
4.7 Problems, 99

Chapter 5 High-Speed LANs, 101

5.1 Fast Ethernet and Gigabit Ethernet, 102
5.2 ATM LANs, 113
5.3 Recommended Reading, 118
5.4 Problems, 119

PART THREE PERFORMANCE MODELING AND ESTIMATION, 121

Chapter 6 Overview of Probability and Stochastic Processes, 125

6.1 Probability, 126
6.2 Random Variables, 130
6.3 Stochastic Processes, 135
6.4 Recommended Reading, 143
6.5 Problems, 144

Chapter 7 Queuing Analysis, 147

7.1 How Queues Behave: A Simple Example, 148
7.2 Why Queuing Analysis?, 149
7.3 Queuing Models, 152
7.4 Single-server Queues, 159
7.5 Multiserver Queues, 162
7.6 Examples, 162
Chapter 8 **Self-similar Traffic, 181**

8.1 Self-similarity, 182
8.2 Self-similar Data Traffic, 185
8.3 Performance Implications of Self-similarity, 198
8.4 Modeling and Estimation of Self-similar Data Traffic, 202
8.5 Recommended Reading, 204
8.6 Problems, 205

Appendix 8A The Hurst Self-similarity Parameter, 208

PART FOUR END-SYSTEM TRAFFIC MANAGEMENT, 209

Chapter 9 **Link-level Flow and Error Control, 211**

9.1 The Need for Flow and Error Control, 212
9.2 Link Control Mechanisms, 215
9.3 ARQ Performance, 223
9.4 Recommended Reading, 235
9.5 Problems, 236

Chapter 10 **Transport-Level Traffic Control, 239**

10.1 Transmission Control Protocol (TCP), 240
10.2 TCP Congestion Control, 254
10.3 Performance of TCP over ATM, 269
10.4 Real-time Transport Protocol, 281
10.5 Recommended Reading, 295
10.6 Problems, 296

PART FIVE NETWORK TRAFFIC MANAGEMENT, 299

Chapter 11 **Internetwork Traffic Management, 301**

11.1 The Internet Protocol (IP), 302
11.2 IPv6, 307
CONTENTS

11.3 Integrated Services Architecture (ISA), 317
11.4 Queueing Discipline, 325
11.5 Random Early Detection, 333
11.6 Recommended Reading, 338
11.7 Problems, 340

Chapter 12 Traffic and Congestion Control in ATM Networks, 343

12.1 Requirements for ATM Traffic and Congestion Control, 344
12.2 ATM Traffic-Related Attributes, 349
12.3 Traffic Management Framework, 353
12.4 Traffic Control, 354
12.5 ABR Traffic Management, 365
12.6 Recommended Reading, 376
12.7 Problems, 377

PART SIX INTERNET ROUTING, 379

Chapter 13 Overview of Graph Theory and Least-Cost Paths, 383

13.1 Elementary Concepts of Graph Theory, 384
13.2 Shortest Path Length Determination, 391
13.3 Recommended Reading, 397
13.4 Problems, 397

Chapter 14 Routing Protocols, 401

14.1 Internetwork Routing Principles, 401
14.2 Distance-Vector Protocol: RIP, 408
14.3 Link-State Protocol: OSPF, 414
14.4 Path-Vector Protocols: BGP and IDRP, 421
14.5 Recommended Reading, 428
14.6 Problems, 428

Chapter 15 Routing for High-Speed and Multimedia Traffic, 431

15.1 Multicasting, 432
15.2 Resource Reservation: RSVP, 444
15.3 IP Switching, 458
15.4 Recommended Reading, 466
15.5 Problems, 466