Contents

2.1.4 The Color Bar Signal 43

2.2 Composite Video 50
2.2.1 Common Characteristics 50
2.2.2 The NTSC System 52
2.2.3 The PAL System 62
2.2.4 The SECAM System 77
2.2.5 Performance-Indicative Parameters and Measurements Concepts 86
2.2.6 The Distribution of Video Signals 106
2.2.7 The Recording of Video Signals 109

2.3 Component Video 112
2.3.1 The GBR Signals 113
2.3.2 The Y, B-Y, R-Y Signals 119
2.3.3 The Component Video Recording 126

Chapter 3. Digital Video Fundamentals 131
3.1 General Considerations 131
3.1.1 Historical Background 131
3.1.2 The Typical Black Box Digital Device 132
3.1.3 Sampling the Signal 133
3.1.4 Quantizing the Sampled Values 134
3.1.5 The Dynamic Range and the Headroom Concept 136
3.1.6 The Quantizing Error 137
3.1.7 The D/A Conversion 139

3.2 The Composite Digital Standards 140
3.2.1 The $4f_{sc}$ NTSC Standard 142
3.2.2 The $4f_{sc}$ PAL Standard 151
3.2.3 Performance-Indicative Parameters and Test Concepts 162
3.2.4 Bit-Parallel $4f_{sc}$ Digital Signal Distribution 168

3.3 The Component Digital Standards 169
3.3.1 The Sampling Rates 171
3.3.2 The Coded Signals 174
3.3.3 The Sampling Frequencies 174
3.3.4 The Quantizing Range and the Implications 179
3.3.5 The Sampling Structure 184
3.3.6 The Time-Division-Multiplexing of Data 185
3.3.7 Timing Reference Signal 190
3.3.8 Ancillary Data 198
3.3.9 Bit-Parallel 4:2:2 Digital Signal Distribution 200
3.3.10 Review of Other Component Digital Formats 204
3.3.11 Performance-Indicative Parameters and Test Concepts 206

Chapter 4. Elements of Acoustics 213
4.1 The Sound Pressure Level 213
4.2 Loudness and Loudness Level 214
4.3 The Dynamic Range of the Ear 216
4.4 The Spectral Resolution of the Ear 216

Chapter 5. Analog Audio Fundamentals 217
5.1 Electrical Signal Levels and Units of Measurement 217
5.1.1 The dBm 217
5.1.2 The dBu 218
5.1.3 The dBV 218
5.2 Typical Signal Levels and Impedances 218
5.2.1 Microphone Signal Levels and Impedances 218
5.2.2 Line Signal Levels and Impedances 219
5.3 Signal Level Monitoring 222
5.3.1 The vu Meter 222
5.3.2 The PPM 222
5.4 Performance-Indicative Parameters and Measurement Concepts 223
5.4.1 Linear Distortions 223
5.4.2 Nonlinear Distortions 224
5.4.3 Noise 226
5.5 The Dynamic Range 228
5.5.1 The Overload Level and the Headroom Concept 228
5.5.2 The Minimum Acceptable Signal Level 229
5.5.3 Limits of Dynamic Range in a Studio Environment 229
5.5.4 Operational Approaches 231
5.5.5 Transmission Constraints 231
5.6 Performance Targets 232

Chapter 6. Digital Audio Fundamentals 235

6.1 General Concepts of Digital Audio 235
6.1.1 Introduction 235
6.1.2 Digital Audio Concepts 235
6.2 Principles of A/D Conversion 236
6.2.1 Ideal Sampling 236
6.2.2 Nyquist Principle and Aliasing 237
6.2.3 Actual Sampling 239
6.2.4 Quantization 239
6.2.5 Coding 244
6.2.6 Dither 244
6.2.7 Dynamic Range 245
6.2.8 Standard Sampling Frequencies 247
6.2.9 Preemphasis 247
6.3 Principles of D/A Conversion 248
6.3.1 The D/A Converter 248
6.3.2 Aperture Effect 248
6.3.3 Low-Pass Filter 249
6.3.4 Oversampling 250
6.3.5 Noise Shaping 256
6.3.6 Practical Limitations of A/D and D/A Conversions 256
6.4 Description of Biphase Mark Encoded Signal 259
6.4.1 Channel Bandwidth 259
6.4.2 NRZ and Biphase Encoding 260
6.5 General Structure of the AES/EBU Interface Protocol 261
6.5.1 The Format Structure 262
6.5.2 AES/EBU Data Signal Characteristics 268
6.6 AES/EBU Signal Electrical Characteristics 268
6.7 Digital Audio Interface Implementation 268
6.7.1 Digital Audio Input Interface 268
6.7.2 AES/EBU Decoder and Demultiplex 269
6.8 Digital Audio Signal Distribution 270
6.8.1 110-ohm Twisted-Pair Cable Distribution 271
6.8.2 75-ohm Coaxial Cable Distribution 271
6.8.3 Wiring Practices and Interconnection 271
6.9 Other Interfacing Protocol Formats 272
6.9.1 MADI Format 272
6.9.2 SDIF2 Format 274
6.9.3 SPDIF Format 275
6.10 Audio Synchronization 275
 6.10.1 Synchronization Between Digital Audio Signals 275
 6.10.2 Synchronization Between Digital Audio and Video Signals 276
6.11 Digital Audio Recording 282

Chapter 7. Bit-Serial Signal Distribution and Ancillary Data Multiplexing 283
7.1 Shannon's Theorem 284
7.2 Channel Coding 286
7.3 The Eye Diagram 288
7.4 Bit-Serial Distribution Standard 291
 7.4.1 Interface Characteristics 291
 7.4.2 $4f_{sc}$ Bit-Serial Distribution 294
 7.4.3 $4:2:2$ Bit-Serial Distribution 304
7.5 Performance Indicative Parameters and Measurements Concepts 308
 7.5.1 Measuring Transmitter-Related Parameters 309
 7.5.2 Measuring Transmission-Related Parameters 320
 7.5.3 Measuring Receiver-Related Parameters 321
 7.5.4 Special Test Signals 323
7.6 Digital Audio Multiplexing 330
 7.6.1 Minimum Implementation 332
 7.6.2 Full AES Implementation 332
 7.6.3 The Audio Multiplexer 335
 7.6.4 The Audio Demultiplexer 337
7.7 Digital Videotape Recording 337
 7.7.1 $4f_{sc}$ Composite DVTRs 337
 7.7.2 Component DVTRs 340
7.8 System Considerations 342

Chapter 8. Digital Signal Compression and Distribution 345
8.1 General Concepts of Video Bit-Rate Reduction (BRR) 345
 8.1.1 Video Signal Redundancies and Entropy 346
 8.1.2 HVS Characteristics 347
8.2 Video Data Reduction Techniques 351
 8.2.1 Lossless Data Rate Reduction 351
 8.2.2 Lossy Data Rate Reduction 353
8.3 DCT Coding Process and Implementation 354
 8.3.1 DCT Coding Process 354
 8.3.2 DCT Block Quantization Process 365
 8.3.3 Zig-Zag Scanning 367
 8.3.4 Run-Length and Level Coding 368
 8.3.5 Variable-Length Coding 369
 8.3.6 Buffer Memory 371
 8.3.7 DCT Decoder 372
 8.3.8 Temporal Data Reduction Techniques 376
 8.3.9 Motion-Compensation Prediction Technique 376
 8.3.10 Complementary Processing Techniques 383
8.4 Video Compression Standards 384
 8.4.1 Video Data Structure Hierarchy 385
 8.4.2 JPEG and Motion-JPEG Schemes 386
 8.4.3 MPEG-1 Video Scheme 389
 8.4.4 MPEG-2 Video Scheme 393
8.5 Video BRR Performance and Applications 395
 8.5.1 Video BRR Scheme Characteristics 395
8.5.2 Data Rates and Compression Ratios 396
8.5.3 Video BRR Scheme Performance 398
8.5.4 Video BRR Scheme Applications 399
8.6 General Concepts of Audio BRR 401
 8.6.1 Needs for Audio BRR 401
 8.6.2 Human Perceptual System Characteristics 401
8.7 Audio Data Reduction Techniques 403
 8.7.1 Lossless Data Reduction 404
 8.7.2 Lossy Data Reduction 405
 8.7.3 Audio Coding Process and Implementation 406
8.8 Audio Compression Standards 410
 8.8.1 MPEG-1 Audio Subsystem 410
 8.8.2 MPEG-2 Audio Subsystem 414
 8.8.3 Other Compression Schemes 416
8.9 Audio BRR Scheme Performance 419
8.10 Distribution of Compressed Signals 420
 8.10.1 Packetized Elementary Stream 420
 8.10.2 Program Stream 422
 8.10.3 Transport Stream 422

Chapter 9. Computers and Television 427

 9.1 Computer Architecture 428
 9.2 Internal Computer Data Communication Buses 428
 9.2.1 Main System Buses 428
 9.2.2 Local Buses 432
 9.2.3 Over-the-Top Buses 435
 9.2.4 Switched Buses 437
 9.2.5 Data Bus Router 439
 9.3 Display Monitors for Computers 440
 9.3.1 The CRT Construction 441
 9.3.2 General Considerations 441
 9.3.3 Display Monitor Performance Characteristics 444
 9.3.4 Computer Monitor Formats 446
 9.4 Expansion Cards 448
 9.4.1 Video Controller Cards 448
 9.4.2 Video/Audio Interface Cards 452
 9.4.3 PCMCIA Expansion Cards 453

Chapter 10. Multimedia and Television 455

 10.1 The Multimedia Concept 455
 10.2 Multimedia Technologies 456
 10.3 Multimedia Hardware and Systems 458
 10.3.1 PC Workstations 458
 10.3.2 Audio and Video Signal-Processing Systems 459
 10.3.3 Disk and Tape Storage 460
 10.3.4 Servers 464
 10.3.5 Cameras 466
 10.3.6 Video Cassette Records (VCRs) 466
 10.3.7 CD-ROM and Magnetooptical Disks 467
 10.3.8 Digital Video Interactive (DVI) 468
 10.4 Multimedia Interconnections 468
 10.4.1 Interfaces 469
 10.4.2 Networks 477
 10.5 Multimedia Software 482
10.6 Multimedia Systems and Applications 483
10.6.1 Video on Demand (VOD) 484
10.6.2 Near Video on Demand (NVOD) 485
10.6.3 PhotoCD 485
10.6.4 Compact Disk Interactive (CD-I) 485
10.6.5 Computer-Telephony Integration (CTI) 486
10.7 Multimedia Standardization Activities 486

Chapter 11. Advanced Television (ATV) Concepts 489

11.1 Why the Industry Is Moving to DTV 489
11.2 Efforts Toward a Single Standard 491
11.3 The ATV Emergence 494
11.4 The Digital Solution 495
 11.4.1 Interoperability 496
 11.4.2 Flexibility 497
 11.4.3 Compression 498
 11.4.4 Progressive Versus Interlace Scanning 499
 11.4.5 Image Aspect Ratio and Pixel Aspect Ratio 500
 11.4.6 Video Format Conversion 501
 11.4.7 Production Aperture and Clean Aperture 504
 11.4.8 Audio System Considerations 506
 11.4.9 DTV Compatibility with Film Originating Programs 506
11.5 The Grand Alliance System 508
 11.5.1 System Overview 508
 11.5.2 Video System Characteristics 510
 11.5.3 Audio System Characteristics 512
 11.5.4 Ancillary Data Services 515
 11.5.5 Program Multiplex and Transport System Characteristics 515
 11.5.6 RF/Transmission System Characteristics 516
 11.5.7 Receiver Characteristics 518
11.6 The Japanese Hi-Vision and Enhanced Definition TV Systems 520
 11.6.1 The Hi-Vision System 520
 11.6.2 The Enhanced Definition TV (EDTV-II) System 521
11.7 The European DVB and PALplus Systems 525
 11.7.1 The DVB System 525
 11.7.2 The PALplus System 528
11.8 Transition from NTSC to ATSC 529
 11.8.1 Transition in Video Production and Distribution 530
 11.8.2 Transition in Audio Production and Distribution 532

Index 547