ECOLOGY OF DUNES, SALT MARSH AND SHINGLE

J.R. Packham
Emeritus Professor of Ecology,
University of Wolverhampton, UK

and

A.J. Willis
Emeritus Professor of Botany
University of Sheffield, UK

The assistance of Dr N.J.W. Clipson (part-author of Chapter 3 and section 10.3) and of Dr R.A. Stuttard (part-author of sections 2.7 and 2.8) is gratefully acknowledged.
CONTENTS

Preface xiii

1 Introduction and primary concepts 1
 1.1 At the edge of the sea 1
 1.1.1 A local example 1
 1.1.2 The objects of study 2
 1.2 Geomorphology of coastal dunes, shingle systems and salt marshes 3
 1.2.1 Detached beaches 5
 1.2.2 Barrier islands 6
 1.3 Substrate material and movement: winds, tides and plants 9
 1.3.1 Substrate particle size 9
 1.3.2 Substrate movement 9
 1.3.3 Origin, transport and erosion of water-borne sediments 11
 1.3.4 Tidal cycles 12
 1.4 Environmental variation in a coastal ecotone 13
 1.5 Grazing, decomposition and renewal 16
 1.5.1 Energy flow 18
 1.5.2 Nutrient cycling 18
 1.6 Patterns in space and time 20
 1.6.1 Fluctuations and phenology 25
 1.7 Stability, selection and strategy 25
 1.7.1 Development and vegetational history of the Berrow salt marsh, North Somerset 26
 1.7.2 Stability and species diversity 28
 1.7.3 Selection and strategy 28
 1.7.4 Plant strategies in response to competition, disturbance and stress 30

2 Primary and secondary production: the autotrophs and their associates 33
 2.1 Plant life forms 33
 2.1.1 Life forms of terrestrial bryophytes 34
 2.1.2 Algae 34
 2.2 Biological spectra 35
 2.3 Processes of primary production 40
 2.3.1 Limiting factors 43
 2.4 Climate, limiting factors and dispersal 43
 2.4.1 Climatically determined species 44
 2.4.2 Edaphic factors 45
 2.4.3 Dispersal 46
Contents

2.5 Soils
2.5.1 Composition and properties of soil 49
2.5.2 Soil formation 49
2.5.3 Soil variation in the Cefni Marsh, Anglesey, UK 50
2.5.4 Soil-landform relationships on the Romney Marshes, Kent, UK 51
2.5.5 Pedogenesis and the soils of dunes, slacks and pine woodlands at Ainsdale (Merseyside), Northern Ireland and Wales 52
2.5.6 Buried soils and coastal aeolian sands 53

2.6 Microbial ecology of coastal ecosystems 55
2.6.1 Mycorrhizal relations of coastal vegetation 55
2.6.2 Nitrogen fixation in coastal sites 56

2.7 Heterotrophs, secondary production and ecosystem processes 57
2.7.1 Characteristics of estuarine heterotrophs 58
2.7.2 Microarthropods and other biota of beaches and dunes 59

2.8 Coastal birds 59
2.8.1 Availability and selection of prey items 62
2.8.2 Bird migration and its impact on intertidal invertebrates 63
2.8.3 Coastal birds: predation and breeding in a Scottish dune/estuary 64
2.8.4 Conservation and management of coastal habitats 64

3 Water and ionic relationships: plant adaptations to coastal environments 67
3.1 Limiting environmental factors 67
3.1.1 Environmental impacts on salt-marsh plants 67
3.2 Halophyte water relations 69
3.3 Adaptive mechanisms in halophytes 74
3.3.1 Growth responses in halophytes 74
3.3.2 Intracellular compartmentalization of solutes 76
3.3.3 Adaptation at the whole-plant level 78
3.3.4 Regulation of uptake at the root 79
3.3.5 Regulation of uptake at the shoot 79
3.3.6 Molecular regulation of halophyte salt tolerance 80
3.4 Waterlogging and soil anaerobiosis 81
3.5 Plant adaptation on sand dunes 83
3.5.1 Transpiration in dune plants 85

4 Salt marshes: tides, time and function 87
4.1 Marshes and mangrove forests 87
4.1.1 Mangrove associations 87
4.1.2 Salt marsh origin and form 88
4.1.3 Transitions from salt marsh to tidal woodland 91
4.2 Tidal cycles, inundation and accretion 91
4.2.1 Tidal range and exposure 93
4.2.2 Measurements of tidal flows 94
4.2.3 Sampling patterns for nutrient flux determination 95
4.2.4 Drainage and pore water 95
4.2.5 Inundation, soil aeration and redox potential 96
4.2.6 Patterns of accretion and erosion 99
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.7 Biotic influence on the stability of salt-marsh sediments</td>
<td>99</td>
</tr>
<tr>
<td>4.2.8 Subsidence and changes in marsh elevation</td>
<td>100</td>
</tr>
<tr>
<td>4.3 Topography: creeks and salt pans</td>
<td>101</td>
</tr>
<tr>
<td>4.3.1 Microrelief</td>
<td>105</td>
</tr>
<tr>
<td>4.4 Development, zonation and age of salt-marsh ecosystems</td>
<td>105</td>
</tr>
<tr>
<td>4.4.1 Salt-marsh floras</td>
<td>105</td>
</tr>
<tr>
<td>4.4.2 Zonation</td>
<td>107</td>
</tr>
<tr>
<td>4.4.3 Developmental zonation and succession</td>
<td>110</td>
</tr>
<tr>
<td>4.4.4 Allogenic versus autogenic factors</td>
<td>110</td>
</tr>
<tr>
<td>4.4.5 Cyclic change in a tropical salt marsh</td>
<td>112</td>
</tr>
<tr>
<td>4.5 Nutrient flux and salt-marsh chemistry</td>
<td>114</td>
</tr>
<tr>
<td>4.5.1 Nitrogen flux in a Spartina alterniflora marsh in New England</td>
<td>116</td>
</tr>
<tr>
<td>4.5.2 Influence of soil sulphide on the distribution of higher plants</td>
<td>117</td>
</tr>
<tr>
<td>4.6 Succession, stability and palaeoecology</td>
<td>118</td>
</tr>
<tr>
<td>5 Salt-marsh dynamics and communities</td>
<td>123</td>
</tr>
<tr>
<td>5.1 Autecology of major plant species</td>
<td>123</td>
</tr>
<tr>
<td>5.2 Plant and animal communities</td>
<td>128</td>
</tr>
<tr>
<td>5.2.1 Interactions between plant and animal communities</td>
<td>129</td>
</tr>
<tr>
<td>5.2.2 Influence of Spartina anglica on salt-marsh communities</td>
<td>129</td>
</tr>
<tr>
<td>5.2.3 Loss of Spartina anglica marsh</td>
<td>129</td>
</tr>
<tr>
<td>5.2.4 Salt-marsh animals</td>
<td>130</td>
</tr>
<tr>
<td>5.3 Seasonal changes</td>
<td>132</td>
</tr>
<tr>
<td>5.3.1 Germination and seedling establishment</td>
<td>132</td>
</tr>
<tr>
<td>5.3.2 Seasonal growth patterns in plants</td>
<td>133</td>
</tr>
<tr>
<td>5.3.3 Rainfall, salinity and survival</td>
<td>137</td>
</tr>
<tr>
<td>5.3.4 Seasonal behaviour in animals</td>
<td>138</td>
</tr>
<tr>
<td>5.4 Plant–herbivore relationships in an evolving sub-Arctic salt marsh</td>
<td>138</td>
</tr>
<tr>
<td>5.4.1 Influence of grazing geese on plant productivity, species diversity and microtopography</td>
<td>139</td>
</tr>
<tr>
<td>5.4.2 Growth responses of Arctic graminoids following grazing</td>
<td>139</td>
</tr>
<tr>
<td>5.4.3 Influence of grazing on succession in emergent vegetation in the Hudson Bay lowlands: an uncertain future</td>
<td>141</td>
</tr>
<tr>
<td>5.4.4 Environmental degradation, food limitation and the cost of philopatry</td>
<td>142</td>
</tr>
<tr>
<td>5.5 Biomass, productivity and energy flow</td>
<td>142</td>
</tr>
<tr>
<td>5.5.1 Primary production</td>
<td>143</td>
</tr>
<tr>
<td>5.5.2 Productivity and tidal gradients</td>
<td>145</td>
</tr>
<tr>
<td>5.5.3 Secondary production by an avian herbivore</td>
<td>146</td>
</tr>
<tr>
<td>5.6 Ecology of the Sapelo Island salt marshes, South Georgia, USA</td>
<td>147</td>
</tr>
<tr>
<td>5.6.1 Ecological processes in the marsh water</td>
<td>148</td>
</tr>
<tr>
<td>5.6.2 Ecological processes in the marsh sediments</td>
<td>149</td>
</tr>
<tr>
<td>5.6.3 Tidal transport of organic matter and a simulation model of carbon flux</td>
<td>150</td>
</tr>
<tr>
<td>6 Sand dunes: initiation, development and function</td>
<td>153</td>
</tr>
<tr>
<td>6.1 Blown sand and its fixation</td>
<td>153</td>
</tr>
<tr>
<td>6.1.1 Classification of dunes</td>
<td>154</td>
</tr>
<tr>
<td>6.1.2 Sand supply for coastal dune formation</td>
<td>155</td>
</tr>
</tbody>
</table>
6.1.3 Plant habit and dune formation 155
6.1.4 Initiation of saltation 156
6.1.5 Saltation boundary layer 157
6.1.6 Rate of sand transport 158
6.1.7 Embryo dune formation 158
6.1.8 Influence of vegetation on sand movement 159
6.1.9 Maintenance of dunes and slacks 159
6.1.10 Older dune ridges and slacks 160
6.1.11 Topographic change and parabolic coastal blowout dunes 160

6.2 The strandline and general zonation: embryo dunes 162
6.2.1 Scottish strandline vegetation 165
6.2.2 Extent of the growth zone 167
6.2.3 Pioneer dune grasses and differential grazing 167
6.2.4 Accretion rates and survival of dune grasses 168
6.2.5 Embryo dune formation by Elytrigia juncea 168

6.3 Influence of land form, soil and water regime on dune plants 169
6.3.1 Composition of dune soils and changes with time 172
6.3.2 Domed water tables in dune systems 173
6.3.3 Dew formation 174
6.3.4 Wet slacks, dry slacks, dunes and the water table 175
6.3.5 Effects of water on plant distribution 176
6.3.6 Influence of weather 177

6.4 The role of non-vascular plants in dune systems 178
6.4.1 Dune bryophytes and their growth forms 179
6.4.2 Dune lichens 180
6.4.3 Ecophysiology of two dominant lichens in Dutch coastal dunes 181
6.4.4 Fungi of dune systems 181

6.5 Two contrasting dune systems 182
6.5.1 Braunton Burrows, North Devon 182
6.5.2 The South Haven dune system and its development 184
6.5.3 Lichens of South Haven dunes 188

6.6 Grazing, nutrients and diversity 190
6.6.1 Rabbits and the influence of grazing on primary producers 190
6.6.2 The impact of myxomatosis 191
6.6.3 Nutrient additions in the absence of grazing 192
6.6.4 Calcium and micronutrient deficiencies in dune soils 194
6.6.5 Nutrient additions in the presence of grazing 195
6.6.6 Use of Oenothera as an indicator species in a Japanese dune system 196

7 Sand-dune dynamics and communities 199
7.1 Marram: the Oregon Dunes, machair and dumped sea sand 199
7.1.1 Marram: form, distribution and growth 199
7.1.2 Establishment, occurrence and vigour of marram 199
7.1.3 Sand stabilization with marram 201
7.1.4 Influence of marram on the Oregon Dunes 201
7.1.5 Scottish sand dune systems 203
Contents

7.1.6 Inland dune floras on dumped sea sand 205
7.2 Phenology and plant population biology 205
 7.2.1 Seasonal activity of reptiles at Studland Heath NNR, Dorset, UK 205
 7.2.2 Plant population biology of winter annuals, a rhizomatous sedge and a tussock-forming grass 206
 7.2.3 Salt marsh and sand dune annuals 212
7.3 Plant and animal communities 213
 7.3.1 Environmental change, disease and biodiversity 214
7.4 Productivity, energy flow and nutrient cycling 215
 7.4.1 Biomass and nutrient accumulation in a Dutch dune system 216
 7.4.2 Cation fluxes at the Ainsdale Dunes, UK 218

8 Coastal shingle 221
 8.1 Location and formation of shingle structures 221
 8.2 Characteristics of shingle vegetation 223
 8.2.1 Influence of abiotic factors 226
 8.2.2 Hydrological conditions and particle size 229
 8.2.3 Sources of water available to shingle plants 230
 8.2.4 Successional relationships on shingle 230
 8.2.5 Shingle ridge succession at Dungeness 231
 8.2.6 Generalized pattern of plant succession on shingle sites in Britain 231
 8.3 Shingle vegetation of a boulder bank in New Zealand 232
 8.4 Two outstanding British shingle beaches 235
 8.4.1 Orfordness and Dungeness 236
 8.4.2 Plant communities of Dungeness 237
 8.4.3 Lichen communities and lichenicolous mites at Dungeness 237
 8.4.4 Other Dungeness invertebrates 239
 8.4.5 Environmental degradation at Dungeness and Orfordness 239
 8.4.6 A sandy cuspatte foreland in the Baltic 240
 8.5 Spits, bars, barrier islands, lagoons and salinas 240
 8.5.1 Blakeney Point and Scolt Head Island, UK 241
 8.5.2 Lagoons 242
 8.5.3 The Waddensee 243
 8.5.4 Chesil Beach and the Fleet 244
 8.5.5 Salinas 247
 8.6 Dynamics of a US northern barrier spit 249

9 Environmental impacts 253
 9.1 Pollution, reclamation and mineral extraction 253
 9.1.1 Reclamation and mineral extraction schemes 256
 9.2 Drainage and water abstraction 256
 9.3 Mowing, grazing, trampling and damage by vehicles 259
 9.3.1 Trampling and path formation 260
 9.3.2 Damage by vehicles 261
 9.4 The influence of invasive plants 262
 9.4.1 Realized niches in exotic populations 265