Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the Third Edition</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xix</td>
</tr>
<tr>
<td>Note on names of plants</td>
<td>xxi</td>
</tr>
<tr>
<td>1 Looking at variation</td>
<td></td>
</tr>
<tr>
<td>‘Kinds’, species and natural classification</td>
<td>1</td>
</tr>
<tr>
<td>Individual variation</td>
<td>5</td>
</tr>
<tr>
<td>The nature of species</td>
<td>5</td>
</tr>
<tr>
<td>2 From Ray to Darwin</td>
<td></td>
</tr>
<tr>
<td>Ray and the definition of species</td>
<td>7</td>
</tr>
<tr>
<td>The Chain of Being</td>
<td>9</td>
</tr>
<tr>
<td>Linnaeus</td>
<td>10</td>
</tr>
<tr>
<td>Buffon and Lamarck</td>
<td>17</td>
</tr>
<tr>
<td>Darwin</td>
<td>20</td>
</tr>
<tr>
<td>Tests of specific difference</td>
<td>29</td>
</tr>
<tr>
<td>3 Early work on biometry</td>
<td></td>
</tr>
<tr>
<td>Commonest occurring variation in an array</td>
<td>35</td>
</tr>
<tr>
<td>Estimates of dispersion of the data</td>
<td>36</td>
</tr>
<tr>
<td>Histograms, frequency diagrams and the normal distribution curve</td>
<td>38</td>
</tr>
<tr>
<td>Other types of distribution</td>
<td>41</td>
</tr>
<tr>
<td>Comparison of different arrays of data</td>
<td>42</td>
</tr>
<tr>
<td>Complex distributions</td>
<td>43</td>
</tr>
<tr>
<td>Local races</td>
<td>46</td>
</tr>
<tr>
<td>Correlated variation</td>
<td>48</td>
</tr>
<tr>
<td>Problems of biometry</td>
<td>50</td>
</tr>
<tr>
<td>4 Early work on the basis of individual variation</td>
<td></td>
</tr>
<tr>
<td>Phenotype and genotype</td>
<td>53</td>
</tr>
<tr>
<td>Transplant experiments</td>
<td>55</td>
</tr>
</tbody>
</table>
The work of Mendel 58
Pangenesis 64
Mendelian ratios in plants 65
Mendelism and continuous variation 66
Physical basis of Mendelian inheritance 73

5 Post-Darwinian ideas about evolution 80
Experimental investigation of evolution 80
The mutation theory of evolution 84
Neo-Darwinism 85

6 Modern views on the basis of variation 88
Molecular basis of heredity 88
Mutation 94
Cytological differences 98
Non-Mendelian inheritance 102
Modern techniques used in studying genetic variation 103
Electrophoretic studies of enzymes 104
Analysis of DNA 107
Use of DNA in studies of variation 111
Patterns of variation 114
Phenotypic variation 114
Developmental variation 116
Phenotypic plasticity 120

7 Breeding systems 124
Outbreeding 124
Late-acting self-incompatibility systems 133
Self-fertilisation 133
Apomixis 134
Consequences of different reproductive modes 143
Advantage and disadvantages of different breeding systems 145
Breeding systems in wild populations 148
Environmental control of facultative apomixis 157
The use of molecular markers in the study of the reproductive behaviour of apomictic plants 158
Evolution of breeding systems 160
Concluding remarks 165

8 Infraspecific variation and the ecotype concept 167
Turesson’s pioneer studies and other experiments 167
Experiments by American botanists 174
The widespread occurrence of ecotypes 183
Contents

Clines 183
Factors influencing the variation pattern 186
The refining of genecological experiments 190
Sampling populations 190
Cultivation experiments 196
The designed experiment 201
The interpretation of experiments 206

9 Recent advances in genecology 208
Variation in populations 209
Plant populations 211
Gene flow 212
Gene flow: early ideas 212
Gene flow: agricultural experiments 213
Gene flow: insights from the movement of pollen 215
Gene flow: studies of seed dispersal 217
Gene flow: studies using molecular tools 218
‘Neighbourhoods’ in wild populations 221
Effects of chance 223
Founder effects in introduced species 225
Selection in populations 226
Fitness 228
Studies of single factors 228
Studies of several interacting factors: Lotus and Trifolium 229
Reciprocal transplant experiments 237
Experimental evidence for disruptive selection 239
Co-selection in swards 244
The speed of microevolutionary change: agricultural experiments 244
Rapid change in polluted sites 246
Microevolution in arable areas 250
Adaptive and non-adaptive characters 252
Patterns of variation in response to seasonal or irregular extreme habitat factors 255
Concluding remarks 257

10 Species and speciation 259
The species concept 259
Other species definitions 260
Gradual speciation 263
Abrupt speciation 264
Contents

11 **Gradual speciation and hybridisation**

- Evidence for gradual speciation
- Crossing experiments with species of *Layia*
- The interpretation of crossing experiments
- Studies of *Layia* using molecular methods
- Uncertainties about the concept of gradual speciation
- Natural hybridisation
- The consequences of hybridisation: some theoretical considerations
- Results of disruptive selection in polymorphic populations
- Introgression and other patterns of hybridisation
- Genetic investigations of hybridisation
- Chemical studies of hybridisation
- Critical tests of the hypothesis of introgression
- Recent studies of introgression using molecular tools
- Introgression in Louisiana Irises
- Concluding remarks

12 **Abrupt speciation**

- How common is polyploidy?
- Experimental studies of polyploids
- Early cytogenetic studies
- Resynthesis of wild polyploids
- Auto- and allopolyploidy
- Genome analysis
- Genome analysis: uncertainties about ancestry
- Genetic control of chromosome pairing: the implications for genome analysis
- Studies of karyotypes
- Chemical studies
- Autopolyploids: reassessment of their evolutionary potential
- Polytopic multiple origin of polyploids
- The origin of new polyploids: the role of somatic events and unreduced gametes
- The persistence of polyploids
- Gene flow between diploids and polyploids
- Polyploids: their potential for evolutionary change
- Distribution of polyploids
- How important is polyhaploidy?
- The delimitation of taxa within polyploid groups
Contents

Abrupt speciation 352
Changes in chromosome number 353
Chromosome repatterning 357
Speciation following hybridisation 358
Minority disadvantage 359

13 The species concept 361
The biological species concept 362
The views of botanical taxonomists 364

14 Evolution: some general considerations 367
The fossil record 368
Diversification of the angiosperms 370
Microevolution and macroevolution 372
The devising of phylogenetic trees 379
The use of computers in taxonomy 382
The influence of numerical taxonomy 384
Cladistics 385
A critique of cladistic approaches 389
Transgenic plants 396

15 Conservation: confronting the extinction of species 399
What are the threats to biodiversity? 400
What classes of evidence are available for assessing claims concerning threats of extinction? 400
The threats induced by changes in land use 402
Threats to native biota from introduced plants and animals 402
The effects of pollution 404
How many species are there in the world? 406
How many species are threatened with extinction? 408
Processes involved in the extinction of species 411
Demographic stochasticity 412
Effects of fragmentation 414
Genetics of small populations 414
Minimum viable populations 416
What priorities should be set in attempting to reverse the decline of endangered species? 419
Ex situ conservation 421
The role of protected areas in countering the threat of extinction 423
Managing resources to prevent extinction of species 426
Restoration ecology 427
Manipulating and creating populations of endangered species in an attempt to prevent extinction 428
Arguments for conservation 432
Glossary 434
References 438
Index 499