Flow Injection Analysis of Pharmaceuticals

Automation in the laboratory

PROFESSOR JOSÉ MARTÍNEZ CALATAYUD

Professor of Analytical Chemistry and Head of College of Pharmacy – CEU University of Valencia
Spain

Taylor & Francis
Publishers since 1798
Contents

Preface xi

PART ONE Introduction 1

1 Automation in the Analytical Laboratory 3
 1.1 Fundamentals and Objectives of Analytical Automation 3
 1.2 Discrete or Batch Methods 6
 1.3 Flow Methods 6
 1.4 Robots in the Analytical Process 10
 1.5 Concluding Remarks 16
 1.6 A Brief History of FIA Definitions 17

PART TWO Flow Injection Analysis 23

2 Fundamentals of Flow Injection Analysis 25
 2.1 FIA Transient Signals 25
 2.2 Theoretical Background: Dispersion of a Solute in a Flowing Stream 26
 2.3 Empirical Assessment of the Sample Dispersion 31
 2.4 Optimization of an FIA System 38
 2.5 Use of FIA Signals 40

3 Essential Elements of an FIA Assembly 49
 3.1 Introduction 49
 3.2 The Propulsion System 49
 3.3 The Sample Introduction System 54
 3.4 The Detection System 60

4 FIA Modes 71
 4.1 Multi-determinations (and Speciation) in FIA 71
 4.2 Reversed FIA 79
Contents

4.3 Miniature Systems 80
4.4 Monitoring Industrial Processes 82
4.5 Dialysis: Membrane Separation 85
4.6 Treatment of Samples for their Analytical Measurement 90
4.7 Gases in FIA Reactions and Assemblies 100

PART THREE
Detection Based on the Interaction Between Radiant Energy and Matter 113

5 Absorption in the UV–Visible Region 115
5.1 General Features 115
5.2 FIA Multi-determinations 119
5.3 FIA–Molecular Absorption Spectroscopic Application to Pharmaceutical Analysis: An Overview 121
5.4 Other FIA Modes 134
5.5 Light scattering (Turbidimetric) Methods 135
5.6 Dissolution Tests for Pharmaceutical Formulations 137

6 Infrared Absorption 147
6.1 General Features 147
6.2 Application of FIA–IR Spectroscopy to Drug Analysis 149

7 Fluorimetry 151
7.1 General Features 151
7.2 Laser Fluorimetry 153
7.3 Influence of the Molecular Environment: Solvents, Micellar Media and Solid Phases 154
7.4 FIA Fluorimetry in Drug Analysis 158

8 Chemiluminescence 171
8.1 Introduction 171
8.2 Basic Chemiluminescence Systems 172
8.3 Analytical Procedures 179
8.4 Applications to Pharmaceutical Analysis 183

9 Photochemical Reactions 203
9.1 Introduction 203
9.2 General Features of the Light Source 204
9.3 Analytical Applications 204
9.4 Materials and Designs in FIA Photochemical Systems 206
9.5 Experimental Variables 210
9.6 Chemical Variables 214
9.7 Reaction Mechanisms 216
9.8 Determination of Drugs in Pharmaceutical Preparations 218
9.9 Foreseeable Trends 218

10 Atomic Absorption Spectrometry 223
10.1 General Considerations 223
10.2 Practical Procedures in Pharmaceutical Analysis 228
PART FOUR Heterogeneous Systems

11 Liquid–Liquid Extraction
11.1 General Remarks
11.2 Elements of Liquid–Liquid Extraction System
11.3 Detectors
11.4 Types of FIA Extraction System: Determination of Pharmaceuticals

12 Solid-phase Reactors
12.1 Introduction
12.2 Features of Immobilized Reagents and Supports
12.3 Performance Characteristics of Solid-phase Reactors
12.4 Analytical Function of the Solid-phase Reactor and Location in the FIA Assembly
12.5 Strategies for the Immobilization of Reagents
12.6 Future Trends

PART FIVE Electroanalytical Methods

13 Fundamentals of Electroanalytical Measurement: Conductimetry and Coulometry
13.1 Introduction
13.2 Continuous-flow Measurements
13.3 Conductimetry
13.4 Coulometry

14 Potentiometry
14.1 Introduction
14.2 Cells
14.3 Electrodes
14.4 Applications to Pharmaceutical Analysis
14.5 Conclusions

15 Voltammetry (Polarography) and Amperometry
15.1 Introduction
15.2 Electrodes
15.3 FIA Assemblies
15.4 Continuous-flow Voltammetry
15.5 Continuous-flow Amperometry
15.6 Polarography

PART SIX Biochemical Methods

16 Flow Injection–Enzymatic Analysis
16.1 Introduction
16.2 Enzymes in Continuous-flow Systems
16.3 Dissolved Enzyme Systems
16.4 Immobilized Enzyme Systems
Contents

16.5 Use of Immobilized Enzyme Reactors for Determining Substrates of Pharmaceutical Interest 363

17 **Immunoassays** 373
17.1 Introduction 373
17.2 Competitive Binding Immunoanalytical Techniques 374
17.3 Flow Injection Immunoassay Technology 376

Index 385