Principles of
Antineoplastic
Drug Development
and Pharmacology

edited by
Richard L. Schilsky
Cancer Research Center
University of Chicago
Chicago, Illinois

Gérard A. Milano
Centre Antoine-Lacassagne
Nice, France

Mark J. Ratain
Cancer Research Center
University of Chicago
Chicago, Illinois
Contents

Series Introduction (Bruce D. Cheson) iii
Preface v
Contributors xi

Part I. Principles of Drug Development

1. Cancer Drug Screening
 Michael R. Grever 1

2. The Human Tumor-Cloning Assay
 Axel-R. Hanauske, Susan G. Hilsenbeck, and Daniel D. Von Hoff 15

3. Phase I Clinical Trial Design
 Rosemarie Mick 29

 Renzo Canetta 37

5. Development of Biological Agents
 Rosemary Mazanet, Mary Ann Foote, and George Morstyn 55

Part II. Principles of Antineoplastic Pharmacology

6. Clinical Pharmacology of Anticancer Drugs
 B. W. Berry and Charles Erlichman 75
Contents

7. Principles of Pharmacokinetics and Pharmacodynamics
 Mark J. Ratain and Rosemarie Mick
 123

8. Biochemical Modulation of Cancer Chemotherapy
 George A. Sotos and Carmen J. Allegra
 143

9. Drug Interactions in Cancer Chemotherapy
 François Lokiec
 189

10. Drug–Radiation Interactions
 Everett E. Vokes
 203

11. Principles of Chemotherapy Interaction with Biological Agents
 Mario Sznol, Christine L. Carter, and Dan L. Longo
 223

12. Hematopoietic Growth Factors and Cancer Chemotherapy
 Michael S. Gordon
 241

13. Dose Intensity
 William M. Hryniuk
 263

Part III. Principles of Chemotherapy Dosing

14. Polymorphic Drug-Metabolizing Enzymes
 Zhihong Lu and Robert B. Diasio
 281

15. Human Cytochromes P-450
 Frank J. Gonzalez
 307

16. Cellular Pharmacodynamics of Anticancer Drugs
 Peter J. O'Dwyer, Thomas C. Hamilton, Kang-Shen Yao, Robert F. Ozols,
 and James M. Gallo
 329

17. Cancer Chemotherapy in the Elderly
 Maurice Schneider
 363

18. Cancer Chemotherapy and Pharmacology in Children
 Steven Weitman and Barton A. Kamen
 375

19. Adaptive Control of Drug Dosage Regimens: Basic Concepts, Relevant Issues,
 and Clinical Applications
 Roger W. Jelliffe
 399

20. Individualized Dosing of Anticancer Drugs
 Alan V. Boddy and A. Hilary Calvert
 435

Part IV. Principles of Drug Resistance

21. Multidrug Resistance
 Ahmad R. Safa
 457
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. DNA Topoisomerases and Tumor Cell Resistance to Their Inhibitors</td>
<td>487</td>
</tr>
<tr>
<td>William T. Beck</td>
<td></td>
</tr>
<tr>
<td>23. The Glutathione System and Drug Resistance</td>
<td>503</td>
</tr>
<tr>
<td>Gerald Batist, Robyn L. Schecter, and Moulay A. Alaoui-Jamali</td>
<td></td>
</tr>
<tr>
<td>24. Importance of DNA Repair in Cancer Chemotherapy</td>
<td>523</td>
</tr>
<tr>
<td>M. Eileen Dolan</td>
<td></td>
</tr>
<tr>
<td>25. Resistance to Antimetabolites</td>
<td>543</td>
</tr>
<tr>
<td>Godefridus J. Peters and Gerrit Jansen</td>
<td></td>
</tr>
<tr>
<td>Part V. Principles of Drug Delivery</td>
<td></td>
</tr>
<tr>
<td>26. Targeted Drug Delivery</td>
<td>587</td>
</tr>
<tr>
<td>Pramod K. Gupta, John B. Cannon, and Anil Kumar Tibrewal</td>
<td></td>
</tr>
<tr>
<td>27. Intra-Arterial Chemotherapy</td>
<td>617</td>
</tr>
<tr>
<td>William D. Ensminger</td>
<td></td>
</tr>
<tr>
<td>28. Intraperitoneal Chemotherapy</td>
<td>629</td>
</tr>
<tr>
<td>Maurie Markman</td>
<td></td>
</tr>
<tr>
<td>29. Intrathecal Chemotherapy</td>
<td>641</td>
</tr>
<tr>
<td>Susan M. Blaney and David G. Poplack</td>
<td></td>
</tr>
<tr>
<td>30. Systemic Infusional Chemotherapy</td>
<td>661</td>
</tr>
<tr>
<td>Jacob J. Lokich and Norwood Anderson</td>
<td></td>
</tr>
<tr>
<td>31. Circadian Pharmacodynamics</td>
<td>681</td>
</tr>
<tr>
<td>William J. M. Hrushesky, Robert de W. Marsh, and Patricia A. Wood</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>721</td>
</tr>
</tbody>
</table>