Contents

Preface xvii

Editor's Note xviii

Dedication xix

1. **Separations in Pharmaceutical Manufacturing** 1

 Wayne P. Olson

 Pure Drugs v. Crude Preparations: Conventional Pharmaceuticals v. Folk Medicine 1

 Developing a Drug (Apart from Regulatory Issues) 2

 Developing a Bioassay 2

 Developing a Chemical/Chromatographic/Biochemical Assay 2

 Purifying the Drug 3

 Scaleup of the Manufacturing Process 4

 Sizing a Chromatographic System 4

 Market Projections 4

 QC Costs and the Value of Product at Risk 5

 Dosage, Demand for Product, and QC Costs 5

 Column Life 5

 Purification Schemes 6

 Separations Based on Analytical Systems 6

 Purification Methods 8

 Particle Separations 8

 Molecular Separations and Conversions 13

 Purification Steps and Yield 28

 Isolators 28
Contents

Scaleup from a Published Bench Method 31

Automation 32

References 32

2. MEMBRANE PERVERAPORATION 39

Timothy de Villiers Naylor

Principles of Pervaporation 40

Factors Affecting Membrane Performance 42
 Feed Flow Rate 42
 Feed Temperature and Composition 43
 Downstream Pressure 44
 Membrane Type 45
 Module Design 46

Energy Requirements 48
 Pervaporation 48
 Distillation 49

Application Opportunities 50
 Feedstocks 50
 Case Studies 51

Conclusions 53

References 54

3. TANGENTIAL FLOW FILTRATION 57

The History of Tangential Flow Filtration 57

Principles and Theory 59
 Interplay of Hydrodynamics and Mass Transport in Tangential Flow Filtration 59
Polarization: Its Effects and Significance in Membrane Filtration 61

Physicochemical Factors Influencing Polarization 68

The Role of Membrane Surface Texture in Polarization 69

Membrane/Solute Interactions and Membrane Fouling 70

Product Recovery by Diafiltration: Effects of Polarization and Fouling 73

Polarization and Fouling in Perspective 74

Tangential Flow Filtration Equipment 75

Membrane Types and Materials 75

Device Types 77

Selection Criteria for Tangential Flow Devices 91

Components in Tangential Flow Filtration Systems 94

Application Classes in Pharmaceutical Separations 113

Clarification of Antibiotic Fermentation Broths 113

Clarification of and Cell Removal from Biological Cultures 120

Lysed Cell Separations: Clarification and Purification of Intracellular Proteins 126

Precolumn Clarification 132

Macromolecular Concentration and Diafiltration 133

Virus Concentration and Diafiltration 135

Macromolecular Separations (High-Resolution Tangential Flow Filtration) 140

Virus Removal from Biopharmaceuticals 149

Small Molecule Concentration and Desalting by Reverse Osmosis and Nanofiltration 155

Organic Solvent Removal and Exchange by Ultrafiltration or Reverse Osmosis 160

Endotoxin Removal by Ultrafiltration 164

Principles of Tangential Flow Filtration Maintenance 170

Flushing 171

Cleaning and Depyrogenation 173

Sanitization 176
5. **Preparative Separation of Enantiomers**
Charles M. Grill, John R. Kern, Scott R. Perrin

Practical Aspects
- Chiral Stationary Phases 236
- Solvent Strength 238
- Sample Mass 238

Optimization Strategy
- Column Selection 239
- Loading Capacity and Recovery 239
- Isolation 240
- Column Longevity 241
- Scaleup 241

Preparative Chromatographic Resolution of the α-Burke Olefin 242

Resolution of Racemates by Closed Loop Recycling Chromatography 245

Continuous Preparative Techniques for Resolving Racemic Mixtures 252
- Batch Chromatography 253
- Liquid-Liquid Countercurrent Chromatography 258
- Simulated Moving Bed Chromatography 261
- Advantages of Simulated Moving Bed Chromatography Relative to Batch High Pressure Liquid Chromatography 264
- Examples of the Use of Simulated Moving Bed Chromatography to Resolve Racemic Mixtures 265

New Techniques 267
- Hollow-Fiber Membrane Reactors 267

References 267
6. **CHROMATOGRAPHIC PURIFICATION OF RECOMBINANT PROTEIN PRODUCTS**
Eugene P. Kroeff

Purification Challenges
System Selectivity
Chromatographic Mode
Product Form
System Selectivity: Practical Considerations

Process Reproducibility
Stationary Phase Integrity
Mobile Phase

Process Scaleup Considerations
Lab Scale Studies and Process Design
Pilot Plant Studies
Production Operations

Examples of Chromatographic Purification of rDNA Products
Literature
Production and Purification of Biosynthetic Human Insulin
Preparation of Chimeric Human Proinsulin Reference Standard

Summary

References

7. **AFFINITY CHROMATOGRAPHY**
Wayne P. Olson

Definitions
Origins of Affinity Separations
Affinity Pairs: Examples
Contents ix

Antigen-Antibody 307
Protein A/Protein G-Antibody 307
Lectin-Glycoproteins and Saccharides 308
Enzyme-Inhibitor 310
Cytokine-Receptor 311
Heparin Sulfate-Clotting Factors and HS-Antithrombin 311
Gelatin-Fibronectin 313
Chelated Metal-Protein 314
Dye-Protein with a Complementary Cleft 315
Polymyxin B-Endotoxin for Depyrogenation 316
Covalent Disulfide Chromatography with SH-Proteins 317
Thiophilic Adsorption of Immunoglobulins 317
Fusion Proteins with Metals, Glutathion, or Maltose 318
Other Affinity Pairs 319

Matrices of Choice 319
Agarose 319
Cellulose 320
Acrylamide and Related Materials 321
Microporous Glass 323
Cellulose-Based Nonwoven Filters 323
Cellulose-Based Membrane Filters 324
Noncellulosic Woven and Nonwoven Fibers 325
Novel Systems 325

Ligand Immobilization Chemistries 329
Epoxy (Oxirane) Activation 329
Succinic or Glutaric Anhydride 330
Sulfonyl Chlorides 330
Divinylsulfone 330
Carbodiimide 331
Chloroformates 331
Triazines, Including Dyes 331
Iminodiacetic Acid for Chelated Metals 332
8. MONOCLONAL ANTIBODIES

Gary Christiansen

Definitions

Historical Notes

The Production of Monoclonal Antibodies

The Fusion Process
In Vivo Production
In Vitro Production

Purification Objectives and Goals

Challenges
Regulatory Requirements
Validation Requirements for Purification
Virus Removal and Inactivation
DNA and Nucleic Acid Removal
Pyrogen Removal
Quality Control of the Monoclonal Antibody

Purification Methods

Miscellaneous Classical Methods
Chromatographic Methods
9. IMMUNOAFFINITY PURIFICATION OF PROTEINS FOR INJECTION, AND THE ISSUE OF ANIMAL VIRUSES 391
Wayne P. Olson

Immobilized Antigens and Antibodies—A Research Tool 391
Campbell et al. and Early Immunosorbent Work 391
Popularization of the Method 391
Evaluation of the Product 394

Immunosorbents for the Purification of Human Clotting Factor VIII for Injection 394
Economic Incentives for Dramatic Changes in Preparative Methods 394
Why Monoclonal Antibodies 395
The Scripps Clinic Approach 396
Hyland's Method M 398

The Issue of Virus Elimination and/or Destruction 401
Viruses in Human-Source F-VIII 401
Viruses and Other Materials in Recombinant Factor VIII 402
The New York Blood Center Method for Destruction of Enveloped Viruses 403
Elution of Viruses from Factor VIII Immunosorbent Columns 404
Dry Heating 405
Current Status of Human-Source and Recombinant F-VIII 405

Preferred Methods for Antibody Immobilization 405

The Matrix 405

The Cyanogen Bromide Method: Issues and Improvements 407

Periodate Oxidation of the Fc Saccharide 409

Sulphhydryl Coupling of Fab Fragments 409

The Nickel Affinity Approach 410

Other Methods 411

Scaling from the Limiting Step in Process 411

Charging and Eluting the Column 412

Avoiding Contamination of the Column 412

Charging and Rinsing Polyclonal and Monoclonal Columns 412

Elution Schemes for Polyclonal and Monoclonal Columns 413

Minimal Denaturation of Product and Antibodies 413

Issues with Immobilized Antibodies 414

Column Half-Life 414

Column Sanitization and Storage 414

Column Clogging and Repacking 414

Bleed of the Antibody into the Product 415

Potential Advantage of the Nickel Affinity Method 415

Phage Antibodies 415

Automation of the Cycle 416

Cell Purification with Immobilized Antibodies 417

Comparison of Immunosorbent with Other Methods 419

References 419
10. **Process Validation of Separation Systems** 427
Steven S. Kuwahara, Jane H. Chuan

Types of Validation 427
- Prospective Process Validation 428
- Concurrent Process Validation 428
- Retrospective Process Validation 428

Why Validate? 429
- Practical Considerations 429
- Process Control 429
- Regulatory Requirements 429

Who, What, and Where to Conduct Validations 430
- Where 430
- Problems of Scale 430
- Safety Issues 431
- Employee Qualifications and Realistic Solutions 431
- Selection of Models 431

Extent of Validations 432
- Cost Considerations 432
- Statistical Needs 433

General Considerations 434
- Differences Between Synthetic Drugs and Secondary Metabolites Versus Biologics 434
- What Needs to Be Validated 434

Getting Started: What Needs to Be in Place Before Beginning Your Validation 440
- Validation Protocol 440

Separation Systems 441
- Extractions and Partitions 441
- Liquid-Solid Separations 442
Contents

Chromatography 443
Isoelectric Focusing, Chromatofocusing, Isotachophoresis, Electrophoresis 447
Filtration Processes 447

References 448

11. A SALUTE TO THE HUMAN PLASMA PROCESSING INDUSTRY AND ITS FOUNDERS, E. J. COHN ET AL. 453

Robert Tenold

Fractionation Automation 460

Centrifuges 460
The Sharples™ Centrifuge 460
Westphalia™ Centrifuges 462
Ultracentrifuges 462
Other Centrifugals 463

Filters and Process Filter Media 463
Plate and Frame Filter 464
Disposable Filter Cartridges 464
Filter and Basket Fuges 464
Funda Filters 465

Wiped or Thin Film Evaporation Systems 465
Rodney Hunt—Luwa Systems 465

Screen Systems 466
Sweco Shaker 466

Ultrafiltration/Diafiltration 467
Hollow-Fiber Media 467
Spiral and Thin Channel Media 468

Gel Chromatography 468
Exclusion and Gel Columns 468
Ion-Exchange Resins 469