NITRIC OXIDE

BIOCHEMISTRY, MOLECULAR BIOLOGY,
AND THERAPEUTIC IMPLICATIONS

Volume Editors:

Louis Ignarro
Department of Pharmacology
Center for Health Sciences
UCLA School of Medicine
Los Angeles, California

Ferid Murad
Molecular Geriatrics Corporation
Lake Bluff, Illinois

ACADEMIC PRESS
San Diego New York Boston London Sydney Tokyo Toronto
Contents

Contributors xix

Chemistry of Nitric Oxide: Biologically Relevant Aspects
Jon M. Fukuto

I. Introduction 1
II. Physical and Chemical Properties of NO 2
III. Reaction of NO with Oxygen 4
IV. Reaction of NO with Superoxide 6
V. Chemistry of NO-Derived Nitrogen Oxides 7
VI. Reactions of NO and NO₂ with Thiols 8
VII. Reaction of NO with Amines 8
VIII. Reaction of NO with Heme Proteins and Metals 9
IX. Reaction of NO with Oxyhemoglobin and Oxymyoglobin 11
X. Summary 13
 References 13

Reactions between Nitric Oxide, Superoxide, and Peroxynitrite: Footprints of Peroxynitrite in Vivo
John P. Crow and Joseph S. Beckman

I. Introduction 17
II. Target Areas for Reactive Species 19
III. Reactions of Nitric Oxide and Rationale for Product Analysis in Vivo 20
Oxygen Radical–Nitric Oxide Reactions in Vascular Diseases
Bruce A. Freeman, Roger White, Hector Gutierrez, Andrés Paler-Martinez, Margaret Tarpey, and Homero Rubbo

I. Introduction 45

II. Prooxidant versus Tissue-Protective Reactions of ·NO 47
 A. Cellular Targets of ·NO 47
 B. ·NO Reaction with O_{3} 48
 C. ·NO Reaction with Alkoxyl and Peroxyl Radicals 49
 D. ·NO Reaction with Iron 50
 E. ·NO Reaction with ·OH Radical and/or trans ONOO⁻ 50
 F. ·NO Induction of cGMP-Dependent Protective Effects 50

II. ·NO–Oxygen Radical Interactions in Atherosclerosis 51
 A. Pathogenesis of Atherosclerosis 51
 B. Cellular Events Induced by Oxidized LDL 52
 C. Mechanisms of LDL Oxidation 52
 D. ·NO Reaction with Oxidized Lipids and LDL 53
 E. Nitrotyrosine Immunoreactivity 57
 F. Oxidative Mechanisms Underlying Impaired Vasomotor Responses in Atherosclerosis 57
Control and Consequences of Endothelial Nitric Oxide Formation
Ingrid Fleming and Rudi Busse

I. Endothelial Nitric Oxide Synthase 187
II. Regulation of Endothelium-Derived Nitric Oxide Formation 188
III. Shear Stress-Dependent Endothelial NO Release 189
IV. NOS Regulation at the Transcriptional Level 192
 A. Shear Stress 192
 B. Cytokines 193
 C. Sex Hormones 194
V. Functional Consequences of Endothelial NO Formation 195
VI. Effect of NO on Protein Expression and Gene Transcription 196
 A. P-Selectin 197
 B. MCP-1 198
VII. Summary 200
 References 201

Control of Electron Transfer in Neuronal Nitric Oxide Synthase by Calmodulin, Substrate, Substrate Analogs, and Nitric Oxide
Dennis J. Stuehr, Husam M. Abu-Soud, Denis L. Rousseau, Paul L. Feldman, and Jianling Wang

I. Introduction 207
II. Role of CaM in the Control of Heme Iron Reduction 208
III. An Additional Role for CaM 209
IV. Control of Heme Reduction by Substrate and Substrate Analogs 210
V. NO Feedback Regulation of NOS 211
 References 212

Negative Modulation of Nitric Oxide Synthase by Nitric Oxide and Nitroso Compounds
Jeanette M. Griscavage, Adrian J. Hobbs, and Louis J. Ignarro

I. Introduction 215
II. Inhibition of All Isoforms of NOS by NO and Nitroso Compounds 217
 A. nNOS 217
 B. eNOS 219
 C. iNOS 219
III. Antagonism of Endothelium-Dependent Relaxation by NO and NO Donor Drugs 222
IV. Modulation of Endothelium-Dependent Vasodilation by S-Nitrosothiols in Vivo 224
V. Mechanism of Inhibition of Purified nNOS by NO 227
VI. Summary and Conclusions 230
References 232

Regulation of Nitric Oxide Synthase: Role of Oxygen Radicals and Cations in Nitric Oxide Formation
Chandra K. Mittal and Chander S. Mehta

I. Introduction 235
II. Role of Oxygen Radicals in the Formation of NO and cGMP 236
 A. Involvement of Superoxide Anion in the Enzymatic Conversion of L-Arginine to NO 236
 B. cGMP: A Target for Endogenous NO and Oxygen Radicals 241
III. Calcium-Dependent Modulation of NO Formation 242
 A. Requirement of Calcium Ion for NO Formation 242
 B. Calcium-Dependent Inhibition of NO Formation 243
IV. Effect of Environmental Toxicants on NO Formation 245
V. Conclusion 247
References 248

Why Tetrahydrobiopterin?
Bernd Mayer and Ernst R. Werner

I. Introduction 251
II. Effects of H₄Biopterin on NOS Activity 252
III. Effects of H₄Biopterin on NOS Conformation 253
IV. H₄Biopterin-Induced Oxidation of NO 254
V. Why H₄Biopterin? 257
References 259

Nitric Oxide and cGMP Signaling
Lee J. McDonald and Ferid Murad

I. Introduction 263
II. NO 264
 A. NOSs 264
S-Nitrosothiols: Chemistry, Biochemistry, and Biological Actions
Gilbert R. Upchurch, Jr., George N. Welch, and Joseph Loscalzo

I. Introduction 343
II. EDRF, Nitric Oxide, and S-Nitrosothiols 343
III. RSNOs in Biological Systems 345
IV. S-Nitrosoproteins: Functional Effects of Posttranslational Nitrosation 346
V. Conclusions 347
References 348

Glyceraldehyde-3-Phosphate Dehydrogenase: A Target for Nitric Oxide Signaling
Bernhard Brüne and Eduardo G. Lapetina

I. Introduction 351
II. Initial NAD⁺-Dependent Protein Modification of a 39-kDa Protein 353
III. NO-Stimulated NAD⁺-Dependent Modification of GAPDH 353
IV. Current Understanding of NO-Stimulated GAPDH Modification 355
References 358

Nitric Oxide Donors: Biochemical Pharmacology and Therapeutics
John Anthony Bauer, Brian P. Booth, and Ho-Leung Fung

I. Biochemical Pharmacology of NO Donors: How and Where Do They Generate NO? 362
 A. Organic Nitrates 362
 B. Organic Nitrites 367
 C. Sodium Nitroprusside 367
 D. Sydononimines 368
 E. S-Nitrosothiols 368
 F. Nucleophile–NO Adducts 369
 G. Conclusions 369
II. Therapeutic Aspects of NO Donors 369
 A. Systemic Hemodynamic Actions 369
 B. Other Therapeutic Applications 372
 C. Local and Cellular Actions 373
Nitric Oxide Donors: A Continuing Opportunity in Drug Design

Stephen R. Hanson, Thomas C. Hutsell, Larry K. Keefer, Daniel L. Mooradian, and Daniel J. Smith

I. Introduction 383
II. Goal: Reducing Restenosis Risk 385
 A. Stenosis and Angioplasty 385
 B. What Is Restenosis? 385
 C. Experimental Challenge 1 386
 D. Caveats 389
 E. Platelet Studies in the Baboon 390
 F. Experimental Challenge 2 391
 G. Experimental Challenge 3 393
III. Artificial Blood Vessels 395
IV. Summary and Significance 396
 References 396

Nitric Oxide and Peripheral Adrenergic Neuromodulation

Roberto Levi, Kwan Ha Park, Michiaki Imamura, Nahid Seyedi, and Harry M. Lander

I. Introduction 399
II. Materials and Methods 400
 A. Mesenteric Arterial Bed 400
 B. Isolated Hearts 401
 C. Ischemia/Reperfusion Experiments 401
 D. NE Assay 402
 E. NE Release from Cardiac Synaptosomes 402
 F. Drugs 402
 G. Statistics 402
III. Results and Discussion 402
IV. Conclusions 411
 References 411
A Study on Tumor Necrosis Factor, Tumor Necrosis Factor Receptors, and Nitric Oxide in Human Fetal Glial Cultures
Barbara A. St. Pierre, Douglas A. Granger, Joyce L. Wong, and Jean E. Merrill

I. Introduction 415
 A. Infections 416
 B. MS 417

II. NO Production by Human Mφ and Glia 418
 A. Monocytes/Mφ 418
 B. Glia 419
 C. Conclusions 420

III. TNF Production, Effects, and Modulation 421
 A. TNF Production by Human Glia 421
 B. TNF Effects on Human Glia 421
 C. TNF Modulation by Pentoxifylline 422

IV. TNF-Rs 422
 A. Structure, Function, and Interactions 422
 B. Modulation of TNF-Rs 423
 C. TNF-R Shedding 426
 D. Conclusions 427

V. Astrocyte TNF-Rs, TNF, and NO 427
 A. TNF-R Expression and Functions 427
 B. TNF-R Modulation 428
 C. TNF-Rs, TNF, and NO 431

VI. Potential Roles of TNF-Rs in Association with Astrocyte TNF and NO Production 431

VII. Conclusions and Recommendations for Future Studies 432
References 433

Inhaled Nitric Oxide, Clinical Rationale and Applications
Claes G. Frostell and Warren M. Zapol

I. Background 439

II. Animal Studies 440
 A. Administration of Exogenous NO 440

III. Clinical Studies 442

IV. Delivery and Monitoring 445
 A. NO Delivery Systems 445
 B. Monitoring 446

V. Adverse Effects of Inhaled NO 447
 A. Formation of Methemoglobin and Effects on NO on Red Blood Cells 447
Inhaled Nitric Oxide Therapy of Pulmonary Hypertension and Respiratory Failure in Premature and Term Neonates
Steven H. Abman and John P. Kinsella

I. Introduction 457
II. NO in the Perinatal Pulmonary Circulation: Experimental Aspects 458
III. Role of Inhaled NO Therapy in the Management of Severe PPHN 463
IV. Role of Inhaled NO Therapy of Premature Neonates with Severe Respiratory Failure 467
V. Conclusions 469
References 470

Clinical Applications of Inhaled Nitric Oxide in Children with Pulmonary Hypertension
David L. Wessel and Ian Adatia

I. Pulmonary Hypertension and Congenital Heart Disease 476
II. Nitric Oxide and Pulmonary Circulation 476
III. Clinical Investigation of Inhaled Nitric Oxide 477
IV. Endothelial Cell Function and Cardiopulmonary Bypass 479
V. Neonate with Congenital Heart Disease 483
VI. Treatment of Transient Graft Dysfunction Following Lung Transplantation 486
VII. Assessment of Pulmonary Vascular Reactivity prior to Cardiac or Cardiopulmonary Transplantation 489
VIII. Congenital Mitral Stenosis 493
IX. Single-Ventricle Lesions 494
X. Delivery and Monitoring Considerations 496