Crassulacean Acid Metabolism
Biochemistry, Ecophysiology and Evolution

With 123 Figures and 45 Tables
Contents

An Introduction to Crassulacean Acid Metabolism. Biochemical Principles and Ecological Diversity
K. Winter and J.A.C. Smith 1

Discovery of Dark CO₂ Fixation 1
Biochemistry 2
Phenotypic Plasticity 3
Ecophysiology and Species Diversity 6
Conclusions 9
References 10

Part A: Biochemistry of Carbon Flow
During Crassulacean Acid Metabolism

Preface 17

1 Stoichiometric Nightmares:
Studies of Photosynthetic O₂ and CO₂ Exchanges
in CAM Plants
C.B. Osmond, M. Popp, and S.A. Robinson 19

1.1 Introduction 19
1.2 Simultaneous Measurements
of O₂ and CO₂ Exchange
Using an O₂/CO₂ Electrode System 20
1.3 Photosynthetic O₂/CO₂ Stoichiometry
During C₃ Photosynthesis in Phase IV 20
1.4 Photosynthetic O₂/CO₂ Exchanges
During Deacidification in Phase III 22
1.5 Photosynthetic O₂/CO₂ Exchanges
During Acidification in Phase I 25
1.6 Conclusions 28
References 28
2 Alternative Carbohydrate Reserves
Used in the Daily Cycle
of Crassulacean Acid Metabolism

2.1 Introduction ... 31
2.2 The Division of CAM Plants
into Two Metabolic Groups 32
2.3 The Use of Soluble Sugars Versus Polysaccharides
as a Carbohydrate Reserve 32
2.4 Sequences of Biochemical Reactions
in the Daily Use of Hexoses Versus Starch
in CAM ... 37
2.5 Bioenergetics in Different Groups of CAM Plants 42
2.6 Conclusions .. 43
References ... 43

3 Roles of Circadian Rhythms, Light
and Temperature in the Regulation
of Phosphoenolpyruvate Carboxylase
in Crassulacean Acid Metabolism

3.1 Introduction .. 46
3.2 Phosphorylation of PEPC in Intact Tissue 47
3.3 Properties and Regulation
of PEPC Kinase and Phosphatase 48
3.4 Effects of Light and Temperature
on PEPC-Kinase Activity 50
3.5 Conclusions .. 51
References ... 52

4 Transport Across the Vacuolar Membrane
in CAM Plants
J.A.C. Smith, J. Ingram, M.S. Tsiantis, B.J. Barkla, D.M. Bartholomew, M. Bettey, O. Pantoja, and A.J. Pennington 53

4.1 Introduction .. 53
4.2 Osmotic and Ionic Relations of the Vacuole 54
4.2.1 Osmotic Characteristics 54
Contents

4.2.2 Ionic Characteristics 54
4.3 Malic Acid Accumulation in the Vacuole 58
4.3.1 Primary Active H\(^+\) Transport 59
4.3.2 Malate Transport into the Vacuole 62
4.3.3 Sodium Chloride Accumulation 65
4.4 Malic Acid Remobilization from the Vacuole 65
References ... 67

5 The Tonoplast as a Target of Temperature Effects in Crassulacean Acid Metabolism
M. Kluge and M. Schomburg 72

5.1 Introduction .. 72
5.2 Possible Implications of the Temperature-Dependent Phase Behaviour of Tonoplast Lipids for CAM 72
5.3 Experimental Approaches 74
5.4 Outlook ... 75
References ... 76

6 Regulation of Crassulacean Acid Metabolism in Kalanchoë pinnata as Studied by Gas Exchange and Measurements of Chlorophyll Fluorescence
U. Heber, S. Neimanis, and W.M. Kaiser 78

6.1 Introduction .. 78
6.2 Control of Photosystem II and of Linear Electron Transport ... 79
6.3 Malate Decarboxylation 84
6.4 Photorespiration .. 86
6.5 pH-Sensitivity of Photosynthesis 88
6.6 Proton Transport Across the Tonoplast 90
6.7 Light-Dependent Cytosolic Alkalinization 91
6.8 Metabolic Regulation of CAM 91
6.9 Conclusions .. 94
References ... 95

7 Energy Dissipation and the Xanthophyll Cycle in CAM Plants
W.W. Adams III and B. Demmig-Adams 97

7.1 Introduction .. 97
7.2 Energy Dissipation and the Xanthophyll Cycle 98
7.2.1 Relationship Between Zeaxanthin Accumulation and Energy Dissipation .. 98
7.2.2 Evidence in Support of Zeaxanthin's Role in Energy Dissipation .. 99
 7.2.2.1 Dithiothreitol, an Inhibitor of Violaxanthin De-Epoxidase .. 99
 7.2.2.2 Energy Dissipation in Lichens ... 99
 7.2.2.3 The Reduction State of Photosystem II .. 100
7.2.2.4 Energy Dissipation in the Absence of Excess Energy ... 100
7.3 The Xanthophyll Cycle and the Light Environment .. 101
 7.3.1 Diurnal Changes Under Natural Conditions .. 101
 7.3.2 Acclimation to Different Light Environments ... 101
7.4 Evidence from CAM Plants .. 102
 7.4.1 Energy Dissipation in the Field .. 102
 7.4.2 Acclimation .. 105
 7.4.2.1 Low Light Versus High Light ... 105
 7.4.2.2 Within a Leaf .. 106
 7.4.3 Photoinhibition .. 109
7.5 Conclusions .. 109

Part B: Environmental and Developmental Control of Crassulacean Acid Metabolism

Preface .. 117

8 Factors Affecting the Induction of Crassulacean Acid Metabolism in *Mesembryanthemum crystallinum*

8.1 Introduction .. 119
8.2 Discovery of Induction of CAM in *Mesembryanthemum crystallinum* by Water Stress in Controlled Environments ... 119
8.3 Induction of CAM in a Natural Habitat ... 120
8.4 Acceleration of Vegetative and Reproductive Growth Under Long Days .. 120
8.5 Effect of Growth Conditions on Induction of CAM by High Salinity .. 121
8.6 O₂ Evolution from Photosystem II and Net Rates of CO₂ Uptake Before and After Induction of CAM 122
8.7 Eventual Induction of CAM Under Well-Watered Conditions 124
8.8 Conditions Resulting in Induction of Phosphoenolpyruvate Carboxylase in the Absence of CAM 125
8.9 Conditions Resulting in Malate Synthesis in the Light in the Absence of CAM 126
8.10 Induction of CAM by Growth Regulators 128
References 132

9 Transcriptional Activation of CAM Genes During Development and Environmental Stress J.C. Cushman and H.J. Bohnert 135

9.1 Introduction 135
9.2 CAM Evolution 136
9.3 Life Cycle of Mesembryanthemum crystallinum 139
9.4 Requisites for Environmental Stress Tolerance 141
9.4.1 Maintaining a Functional Chloroplast 141
9.4.2 Osmotic Adjustment 142
9.4.3 Magnitude of Stress-Induced Gene Expression 142
9.5 Regulation of CAM Gene Expression 143
9.5.1 Transcript Amounts 143
9.5.2 Transcription of CAM Genes 146
9.5.3 Analysis of Transcription Control 148
9.5.4 Transcription and mRNA Stability 149
9.6 Transduction Mechanisms of Environmental Stress 150
9.7 Genetics and Transformation of Mesembryanthemum crystallinum 152
9.8 Perspectives 153
References 155

10 Environmental Control of CAM Induction in Mesembryanthemum crystallinum — a Role for Cytokinin, Abscisic Acid and Jasmonate? J.M. Schmitt, B. Fißthaler, A. Sheriff, B. Lenz, M. Bäßler, and G. Meyer 159

10.1 Introduction 159
10.2 The Concept of Stress 162
10.3 Environmental or Developmental Control of CAM Induction? .. 163
10.3.1 CAM Induction in Well-Watered Plants ... 163
10.3.2 Relief from Stress .. 165
10.3.3 Leaf Water Content .. 166
10.3.4 The Role of the Roots ... 166
10.4 Modulation of PEPC and CAM Induction by Growth Regulators 167
10.4.1 Abscisic Acid (ABA) ... 167
10.4.2 Cytokinin ... 168
10.4.2.1 Cytokinin Treatment of Shoots ... 168
10.4.2.2 Cytokinin Treatment of Roots .. 169
10.4.3 Jasmonate .. 169
10.4.4 Combinations of Growth Regulators .. 170
References .. 171

11 Regulation of Crassulacean Acid Metabolism by Water Status in the C3/CAM Intermediate
Sedum telephium
N. Smirnoff .. 176

11.1 Introduction .. 176
11.2 Characteristics of the C3-CAM Switch in Sedum telephium ... 176
11.3 Regulation of Malate Accumulation by Water Status in Sedum telephium 177
11.3.1 Relationship Between Water Status and Malate Accumulation 177
11.3.2 Effect of Water Deficit on PEPC and Malic Enzyme Capacity 180
11.3.3 Effect of Water Deficit on the Properties of PEPC .. 181
11.4 Conclusions and Speculations ... 187
References .. 188

12 Putative Causes and Consequences of Recycling CO2 via Crassulacean Acid Metabolism
C.E. Martin .. 192

12.1 Introduction .. 192
12.2 Recycling of Respiratory CO2 During CAM in Tillandsia ... 195
12.3 Recycling of Respiratory CO2 During CAM-Cycling in Talinum 197
13 Ontogenetic Development of Crassulacean Acid Metabolism as Modified by Water Stress in *Peperomia*
I.P. Ting, A. Patel, S. Kaur, J. Hann, and L. Walling

13.1 Introduction
13.2 Experimental Plant Material
13.3 CAM in *Peperomia*
13.3.1 Distribution Among Species
13.3.2 Ontogenetic Expression of CAM
13.3.3 Modification of CAM Expression by Water Stress
13.3.4 Recovery of Full CAM Expression After Rewatering
13.4 Discussion of Water-Stress-Induced CAM Expression
13.4.1 General Effects
13.4.2 PEPC mRNA
13.4.3 PEPC Activity
13.4.4 Reversibility of the Water-Stress Response
13.5 Concluding Remarks

14 Crassulacean Acid Metabolism in Leaves and Stems of *Cissus quadrangularis*
A. Virzo De Santo and G. Bartoli

14.1 Introduction
14.2 Main Characteristics of Leaf and Stem
14.3 Gas Exchange
14.3.1 Stem Gas Exchange
14.3.2 Stem Gas Exchange Under Water Shortage
14.3.3 Leaf Gas Exchange
14.3.4 Leaf Gas Exchange Under Water Shortage
14.4 Nocturnal Accumulation of Malic Acid in Leaf and Stem
14.4.1 Nocturnal Accumulation of Malic Acid and Water Shortage
15 Variations in the Phases of Crassulacean Acid Metabolism and Regulation of Carboxylation Patterns Determined by Carbon-Isotope-Discrimination Techniques
A.M. Borland and H. Griffiths

15.1 Introduction 230
15.2 Phases II and IV: General Characteristics 230
15.2.1 Expression of Phases II and IV 230
15.2.2 Physiological Regulation of Phases II and IV 233
15.2.3 Regulation of C_3/C_4 Carboxylation During Phases II and IV 234
15.3 Regulation of Daytime Photosynthesis in Facultative CAM Plants 234
15.3.1 Mesembryanthemum crystallinum 235
15.3.2 Sedum telephium 235
15.3.3 Clusia minor 236
15.4 Balance of C_3/C_4 Carboxylation in Facultative CAM Plants 238
15.5 Instantaneous Discrimination of Carbon Isotopes 239
15.5.1 General Principles 239
15.5.2 On-Line Discrimination in Tillandsia utriculata 239
15.5.3 On-Line Discrimination in Sedum telephium 240
15.5.4 On-Line Discrimination in Clusia minor 242
15.5.5 Carbon-Isotope Discrimination in Mesembryanthemum crystallinum 243
15.6 Implications of Carbon Flow During Phases II and IV for C_3/CAM Intermediates 245
References 246

Part C: Ecophysiology and Evolution of Crassulacean Acid Metabolism

Preface 253
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>High Productivity of Certain Agronomic CAM Species</td>
<td>P.S. Nobel</td>
<td>255</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td></td>
<td>255</td>
</tr>
<tr>
<td>16.2</td>
<td>Experimental Design for High Productivity</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>16.3</td>
<td>Productivity of Certain CAM Plants</td>
<td></td>
<td>259</td>
</tr>
<tr>
<td>16.4</td>
<td>Gas Exchange and Biochemical Variations Among Photosynthetic Pathways</td>
<td></td>
<td>261</td>
</tr>
<tr>
<td>16.5</td>
<td>Conclusions</td>
<td></td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>264</td>
</tr>
<tr>
<td>17</td>
<td>Features of Roots of CAM Plants</td>
<td>P.S. Nobel and G.B. North</td>
<td>266</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td></td>
<td>266</td>
</tr>
<tr>
<td>17.2</td>
<td>Anatomy and Morphology</td>
<td></td>
<td>266</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Monocotyledons – Agaves and Orchids</td>
<td></td>
<td>267</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Dicotyledons – Cacti</td>
<td></td>
<td>267</td>
</tr>
<tr>
<td>17.3</td>
<td>Distribution in Soil</td>
<td></td>
<td>269</td>
</tr>
<tr>
<td>17.4</td>
<td>Root: Shoot Ratios</td>
<td></td>
<td>270</td>
</tr>
<tr>
<td>17.5</td>
<td>Respiration and Carbon Costs</td>
<td></td>
<td>271</td>
</tr>
<tr>
<td>17.6</td>
<td>Water Uptake</td>
<td></td>
<td>272</td>
</tr>
<tr>
<td>17.6.1</td>
<td>Root Hydraulic Conductivity</td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>17.6.2</td>
<td>Axial Conductivity</td>
<td></td>
<td>274</td>
</tr>
<tr>
<td>17.6.3</td>
<td>Radial Conductivity</td>
<td></td>
<td>275</td>
</tr>
<tr>
<td>17.6.4</td>
<td>Root Initiation and Abscission</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>17.7</td>
<td>Conclusions</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>278</td>
</tr>
<tr>
<td>18</td>
<td>Aquatic CAM Photosynthesis</td>
<td>J.E. Keeley</td>
<td>281</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td></td>
<td>281</td>
</tr>
<tr>
<td>18.2</td>
<td>Evidence of CAM Photosynthesis</td>
<td></td>
<td>281</td>
</tr>
<tr>
<td>18.3</td>
<td>Distribution of Aquatic CAM Plants</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Aquatic CAM Species</td>
<td></td>
<td>284</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Ecological Distribution of Aquatic CAM Plants</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td>18.3.3</td>
<td>Questionable Aquatic CAM Species</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td>18.4</td>
<td>Adaptive Significance of CAM in the Aquatic Environment</td>
<td></td>
<td>288</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Seasonal Pool CAM Species</td>
<td></td>
<td>288</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Lacustrine CAM Species</td>
<td></td>
<td>290</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>18.5</td>
<td>Aquatic CAM Plants in an Aerial Environment</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>18.6</td>
<td>Carbon-Isotope Discrimination</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>18.7</td>
<td>Conclusions</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Clusia: Plasticity and Diversity in a Genus</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of C₃/CAM Intermediate Tropical Trees</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U. Lüttge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Diversity</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>19.2</td>
<td>Plasticity</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>19.2.1</td>
<td>Gas Exchange</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>19.2.1.1</td>
<td>Availability of Water and Leaf-to-Air</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water-Vapour Pressure Difference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.2.1.2</td>
<td>Irradiance and Availability of Water</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>19.2.1.3</td>
<td>Temperature</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>19.2.1.4</td>
<td>Survey of Clusia Species</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>19.2.2</td>
<td>Metabolism</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>19.2.2.1</td>
<td>Carbohydrates</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>19.2.2.2</td>
<td>Organic Acids</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>19.3</td>
<td>The Ecophysiological Significance of Plasticity in Clusia</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>19.3.1</td>
<td>Ecological Amplitude of Clusia: Habitats and Life Forms</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>19.3.2</td>
<td>CO₂ Acquisition</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>19.3.3</td>
<td>Accumulation of Organic Acids</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>19.4</td>
<td>Regulation of Plastic Responses</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>Plasticity and Diversity</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Seasonal Changes in Daytime Versus Nighttime CO₂ Fixation</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of Clusia uvitana In Situ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Zotz and K. Winter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td>20.2</td>
<td>Seasonal Changes in the Expression of CAM</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>20.3</td>
<td>Short-Term Changes in the Expression of CAM</td>
<td>317</td>
<td></td>
</tr>
<tr>
<td>20.4</td>
<td>The Effect of Leaf Ontogeny</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>20.5</td>
<td>Correlation Between A_{max} and 24-h Carbon Gain</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>20.6</td>
<td>Summary and Conclusions</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>322</td>
<td></td>
</tr>
</tbody>
</table>
21 Crassulacean Acid Metabolism in the Genus Kalanchoë: Ecological, Physiological and Biochemical Aspects

M. Kluge and J. Brulfert

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1 Introduction</td>
<td>324</td>
</tr>
<tr>
<td>21.2 Results of $\delta^{13}C$ Surveys</td>
<td>325</td>
</tr>
<tr>
<td>21.2.1 CAM in Relation to Intragenic Taxonomy and Growth Forms</td>
<td>325</td>
</tr>
<tr>
<td>21.2.2 Ecological Aspects</td>
<td>326</td>
</tr>
<tr>
<td>21.2.3 CAM Evolution in the Genus Kalanchoë</td>
<td>327</td>
</tr>
<tr>
<td>21.3 Experimental Approaches</td>
<td>327</td>
</tr>
<tr>
<td>21.3.1 Comparison of CAM Behaviour</td>
<td>327</td>
</tr>
<tr>
<td>21.3.2 Regulation of CAM: Studies with Epiphytic Species</td>
<td>330</td>
</tr>
<tr>
<td>21.4 Conclusions</td>
<td>333</td>
</tr>
<tr>
<td>References</td>
<td>334</td>
</tr>
</tbody>
</table>

22 Carbon-and Hydrogen-Isotope Discrimination in Crassulacean Acid Metabolism

H. Ziegler

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1 Introduction</td>
<td>336</td>
</tr>
<tr>
<td>22.2 Basic Principles</td>
<td>336</td>
</tr>
<tr>
<td>22.3 Correlations Between $\delta^{13}C$ and δD Values?</td>
<td>339</td>
</tr>
<tr>
<td>22.4 Differences in $\delta^{13}C$ and δD Values Between Different Organs and Tissues</td>
<td>339</td>
</tr>
<tr>
<td>22.5 $\delta^{13}C$ and δD Values of Parasites on CAM Plants</td>
<td>342</td>
</tr>
<tr>
<td>22.5.1 Holoparasites</td>
<td>342</td>
</tr>
<tr>
<td>22.5.2 Hemiparasites</td>
<td>344</td>
</tr>
<tr>
<td>22.5.3 The Isotopic Fate of Deuterium in Parasites</td>
<td>346</td>
</tr>
<tr>
<td>22.6 $\delta^{13}C$ and δD Values of Nectar</td>
<td>346</td>
</tr>
<tr>
<td>22.7 Conclusions</td>
<td>346</td>
</tr>
<tr>
<td>References</td>
<td>347</td>
</tr>
</tbody>
</table>

23 Evolutionary Aspects of Crassulacean Acid Metabolism in the Crassulaceae

E.A.H. Pilon-Smits, H. 't Hart, and J. van Brederode

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1 Introduction</td>
<td>349</td>
</tr>
<tr>
<td>23.2 Taxonomy of the Crassulaceae</td>
<td>349</td>
</tr>
</tbody>
</table>
23 Evolutionary Studies of CAM in the Crassulaceae

23.3 Evolutionary Studies of CAM in the Crassulaceae 351
23.4 Evolution of CAM in *Sedum* and *Aeonium* 352
23.4.1 *Sedum* 353
23.4.2 *Aeonium* 354
23.5 Conclusions 356
References 357

24 The Evolution of Crassulacean Acid Metabolism

J.A. Raven and R.A. Spicer 360

24.1 Introduction 360
24.2 Selective Significance of CAM Traits in Terrestrial Plants in the Context of Climates and Palaeoclimates 360
24.3 Selective Significance of CAM Traits in Aquatic Plants in the Context of Climates and Palaeoclimates 370
24.4 Mechanistic Considerations of the Evolution of CAM 373
References 380

Part D

25 Crassulacean Acid Metabolism: Current Status and Perspectives

K. Winter and J.A.C. Smith 389

25.1 Biochemistry and Energetics 389
25.1.1 Dark CO₂ Fixation and Vacuolar Storage 389
25.1.2 Mitochondrial Metabolism and Carbon Fluxes in Phase III 391
25.2 Environmental and Developmental Control 399
25.2.1 *Mesembryanthemum crystallinum* 399
25.2.2 *Kalanchoë blossfeldiana* 401
25.2.3 C₃ to CAM Shifts in Other Species 402
25.2.4 Field Studies 403
25.3 Growth and Productivity 404
25.3.1 Potential Productivity 404
25.3.2 Elevated CO₂ 404
25.3.3 Light-Use and Energetics of the 24-h CAM Cycle 406
Contents

25.3.4 CAM versus C₃: Costs and Benefits 416
25.4 Evolutionary Origins 416
References .. 420

26 Taxonomic Distribution of Crassulacean
Acid Metabolism
J.A.C. Smith and K. Winter 427
References .. 434

Subject Index ... 437