Contents

Contributors xiii
Preface xvii

Clinical Development of Topoisomerase-Interactive Drugs
Franco M. Muggia and Howard A. Burris

I. "Classical" Topoisomerase II-Interacting Drugs 2
 A. Anthracyclines 2
 B. Miscellaneous DNA-Intercalating Drugs 3
 C. Nonintercalating Topoisomerase II-Interacting Drugs 5
II. Other Topoisomerase II-Interacting Drugs 6
III. Topoisomerase I-Interacting Drugs: Camptothecins 7
IV. Clinical Implications of Topoisomerase–Drug Interactions 21
 A. Optimal Dose Scheduling 21
 B. Drug Resistance Considerations 22
 C. Drug Combinations 22
 D. Collateral Sensitivity and Biochemical Modulation 23
V. Conclusion 23
 References 23

Topoisomerases in Human Leukemia
David Peereboom, Martin Charron, and Scott H. Kaufmann

I. Introduction 33
II. Topoisomerase II in Human Leukemia 33
 A. Topoisomerase II in Normal Lymphohematopoietic Cells 33
 B. Antileukemic Activity of Topoisomerase II-Directed Agents 34
 C. Resistance to Topoisomerase II-Directed Agents 36
III. Topoisomerase I in Human Leukemia 41
 A. Topoisomerase I in Normal Lymphohematopoietic Cells 41
 B. Antileukemic Activity of Topoisomerase I-Directed Agents 41
 C. Future Clinical Development of Camptothecin Analogs 42
 D. Potential Mechanisms of Resistance 42
IV. Perspective 43
 References 45
Preclinical and Clinical Development of Camptothecins
Dan Costin and Milan Potmesil

I. Introduction 51
II. Camptothecins in Current Research 54
 A. Camptothecin Sodium Salt (NSC 100880) 54
 B. 20(S)-Camptothecin (NSC 94600) 55
 C. 9-Aminocamptothecin (NSC 603071) 55
 D. CPT-11 (Irinotecan) 57
 E. Topotecan (NSC 609699) 58
 F. Pharmacokinetics and Toxicity 59
 G. Combination Therapy 62
 H. Drug Resistance 63
III. Conclusion and Perspectives 64
 References 66

Mechanisms of Topoisomerase I Inhibition by Anticancer Drugs
Yves Pommier, Akihiko Tanizawa, and Kurt W. Kohn

I. Topoisomerase I Reaction Mechanisms 73
II. Inducers of Top1-Linked DNA Breaks 76
 A. Camptothecins 76
 B. Other Inducers 84
III. Suppressors of Top1-Linked DNA Breaks 85
 References 85

Drug Resistance Mechanisms of Topoisomerase I Drugs
Toshiwo Andoh and Kosuke Okada

I. Introduction 93
II. Mutant Cells, CPT-K5, Possess an Altered Form of Topo I Resistant to CPT 95
III. The Mutant Enzyme Possesses Higher Affinity for Recognition Sequences 95
IV. Determination of Mutation Sites of K5 Topo I Responsible for CPT Resistance 96
V. Site-Directed Mutagenesis of Topo I and Expression of Escherichia coli 98
VI. Conclusion 100
 References 101
Mechanism of Action of Topoisomerase II-Targeted Antineoplastic Drugs

Neil Osheroff, Anita H. Corbett, and Megan J. Robinson

I. Introduction 105
II. Topoisomerase II-Targeted Antineoplastic Drugs 106
III. Catalytic Cycle of Topoisomerase II 107
 A. Step 1: DNA Binding 108
 B. Step 2: Pre-Strand Passage DNA Cleavage/Religation 109
 C. Step 3: DNA Strand Passage 110
 D. Step 4: Post-Strand Passage DNA Cleavage/Religation 110
 E. Step 5: ATP Hydrolysis 110
 F. Step 6: Enzyme Turnover 110
IV. Enhancement of Topoisomerase II-Mediated DNA Breakage by Antineoplastic Drugs 111
V. Effects of Antineoplastic Drugs on the Sites of Topoisomerase II-Mediated DNA Breakage 112
VI. Kinetic Pathway by Which Antineoplastic Drugs Enhance DNA Breakage 113
 A. Effects of Antineoplastic Drugs on the Pre-Strand Passage DNA Cleavage/Religation Equilibrium 114
 B. Effects of Antineoplastic Drugs on the Post-Strand Passage DNA Cleavage/Religation Equilibrium 115
 C. Quinolones as a Novel Mechanistic Class of Topoisomerase II-Targeted Drugs 115
VII. Enzyme Interaction Domains for Topoisomerase II-Targeted Drugs 117
VIII. Possible Ramifications of Mechanistic Diversity among Topoisomerase II-Targeted Drugs 118
IX. Perspectives and Conclusions 119
References 119

Determinants of Sensitivity to Topoisomerase-Targeting Antitumor Drugs

Peter D'Arpa

I. Introduction 127
II. Factors Affecting Cleavable Complex Formation 128
 A. Intracellular Drug Concentration 128
 B. Quantity and Activity of Topoisomerases 128
III. Processing of Cleavable Complexes into Lethal Lesions 131
IV. Responses to Damage Resulting from Cleavable Complexes 132
 A. Poly(ADP-ribosyl)ation 133
Resistance of Mammalian Tumor Cells to Inhibitors of DNA Topoisomerase II
William T. Beck, Mary K. Danks, Judith S. Wolverton, Mei Chen, Bernd Granzen, Ryungsa Kim, and D. Parker Suttle

I. Introduction 145

II. Resistance of Tumor Cells to DNA Topo II Inhibitors: Cellular Pharmacology of the at-MDR Phenotype 146

III. Biochemical Features Associated with the at-MDR Phenotype 148
 A. Isozymes of DNA Topo II in Mammalian Cells 148
 B. Increased ATP Requirement for Catalytic Activity of Topo II in at-MDR Cells 149
 C. Phosphorylation of Topo II in at-MDR Cells 150
 D. Role of the Nuclear Matrix in at-MDR 151

IV. Mutations in the Topo IIα Gene and Their Relationship to at-MDR 151

V. Other Features of at-MDR Cells: Pleiotropic Consequences to the Cell of an Altered Topo II 154
 A. Altered Plateau Densities and Temperature Sensitivities of at-MDR Cells 154
 B. Oncogene Expression in at-MDR Cells 155
 C. Relationship between Topo II and Topo I: Alkylator Resistance, Poly(ADP)ribosylation, and DNA Repair in at-MDR Cell Lines 156
 D. Distribution of Topo II in at-MDR Cells 157

VI. Possible Mechanisms of at-MDR 157
 A. Decreased Topo II Gene Expression 157
 B. Increased Strand Religation or Decreased Drug Binding to the Topo II–DNA Complex 158
 C. Resistance to “Programmed Cell Death” 159
 D. Progression through G2 Block 160
 E. Resistance to Induction of Sister Chromatid Exchanges 160
 F. Decreased Poly(ADP-ribose) Polymerase 161
A Bacteriophage Model System for Studying Topoisomerase Inhibitors
Kenneth N. Kreuzer

I. Introduction 171
II. Isolation of *w*-AMSA R Mutants of T4 172
III. A Common Mode of Action for Topoisomerase Inhibitors 173
IV. The Inhibitor Binding Site 174
V. Involvement of Topoisomerase in Mutation Pathways 176
VI. Recombinational Repair of Topoisomerase–DNA Complexes 178
VII. Summary 181
References 182

Drugs Affecting Trypanosome Topoisomerases
Theresa A. Shapiro

I. Trypanosomes, Their DNA, and Topoisomerases 187
 A. Mitochondrial DNA and Topoisomerase Inhibitors 187
 B. Nuclear DNA and Topoisomerase Inhibitors 190
II. Antitrypanosomal Drugs 191
III. Discussion 195
References 197

Yeast as a Genetic Model System for Studying Topoisomerase Inhibitors
John L. Nitiss

I. Introduction 201
II. The Problem of Getting Drugs into Yeast 203
III. Tools for Studying Mechanisms of Drug Resistance in Yeast 204
 A. DNA Repair Mutations 204
 B. Controlling the Level of Topoisomerase Activity:
 Effects of Overexpression of *TOP2* on Sensitivity to
 Antitopoisonerase Agents 206
IV. Determining the Targets of Drugs That Inhibit
 DNA Topoisomerases 206
V. Isolation of Mutations in DNA Topoisomerases That Are Resistant to Antitopoisomerase Agents 209
 A. Using Yeast to Identify Camptothecin-Resistant top1 Mutants 210
 B. Screening and Characterization of Mutants Resistant to Antitopoisomerase II Agents 212
 C. Testing Mammalian Topoisomerase Mutations Using Yeast 215
VI. Mechanisms of Cell Killing by Camptothecin and Antitopoisomerase II Agents: The View in Yeast 216
VII. Other Yeast Genes That Play a Role in Drug Sensitivity and Resistance 218
VIII. Future Prospects 220
References 221

DNA Topoisomerase Inhibitors as Antifungal Agents
Linus L. Shen and Jennifer M. Fostel

I. Introduction 227
 A. Role of Topoisomerase Inhibitors in Antimicrobial Chemotherapy 227
 B. Fungal Infections and Fungal Topoisomerases 228
II. Identification and Level of Type I and Type II Topoisomerases in Pathogenic Fungi 230
III. Type I DNA Topoisomerase in Candida albicans 233
 A. Purification and Characterization of Topoisomerase I 233
 B. Specificity of Different Chemical Agents for the Fungal Topoisomerase I 234
IV. Type II DNA Topoisomerase in Candida albicans 236
 A. Purification 236
 B. Differential Response of the Mammalian and C. albicans DNA Topoisomerases IIs to Inhibitors 238
V. Concluding Remarks 241
References 241

Design of Topoisomerase Inhibitors to Overcome MDR1-Mediated Drug Resistance
Allan Y. Chen and Leroy F. Liu

I. Introduction 245
II. MDR1-Mediated Drug Resistance in Human Cancers 246
III. Camptothecin Overcomes MDR1-Mediated Resistance in Human Carcinoma Cells 247
IV. Some Structural Features for MDR1 Sensitivity 249