Advances in Pharmacology

Volume 31

Anesthesia and Cardiovascular Disease

Edited by

Zeljko J. Bosnjak
Departments of Anesthesiology and Physiology
The Medical College of Wisconsin
Milwaukee, Wisconsin

John P. Kampine
Departments of Anesthesiology and Physiology
The Medical College of Wisconsin
Milwaukee, Wisconsin
Contents

Contributors xxi
Preface xxix

Part I
Cardiac Muscle

Regulation of the Calcium Slow Channels of Heart by Cyclic Nucleotides and Effects of Ischemia
Nicholas Sperelakis

I. Introduction 1
II. Types of Calcium Channels 2
III. Cyclic AMP Stimulation of Slow Calcium Channels 6
IV. Phosphorylation Hypothesis 7
V. Protein Kinase A Stimulation 9
VI. Cyclic GMP Inhibition of Slow Calcium Current 9
VII. Protein Kinase G Inhibition 14
VIII. Inhibition by Muscarinic Agonists 16
IX. Protein Kinase C and Calmodulin Protein Kinase 18
X. Comparison with Vascular Smooth Muscle and Skeletal Muscle 18
XI. Direct Stimulation of Slow Calcium Channels by Gs Proteins and β-Receptors 20
XII. Summary 20
References 21

Functional Adaptation to Myocardial Ischemia: Interaction with Volatile Anesthetics in Chronically Instrumented Dogs
Patrick F. Wouters, Hugo Van Aken, Marc Van de Velde, Marco A. E. Marcus, and Willem Flameng

I. Introduction 25
II. Chronic Instrumentation and Monitoring 26
III. Effects of Ischemic Preconditioning on Functional Recovery from Stunning in Conscious Dogs 29
IV. Discussion 31
References 36
Excitation—Contraction Uncoupling and Vasodilators for Long-Term Cold Preservation of Isolated Hearts

David F. Stowe

I. Introduction 39
II. Long-Term Cardiac Perfusion 42
III. Preservation of Isolated Hearts 46
 A. Atrial Rate, Atrial–Ventricular Conduction, and Cardiac Rhythm 46
 B. Left Ventricular Pressure and Cardiac Efficiency 47
 C. Coronary Flow and Oxygen Extraction 49
 D. Responses to Vasodilators 51
IV. Discussion 54
References 59

Troponin T as a Marker of Perioperative Myocardial Cell Damage

H. Mächler, H. Gombotz, K. Sabin, and H. Metzler

I. Introduction 63
II. Cardiac Troponin 64
III. Troponin T in Coronary Artery Bypass Patients with Unstable Angina 65
IV. Troponin T versus Conventional Markers of Myocardial Cell Damage in Perioperative Settings 70
V. Summary 71
References 72

Silent Myocardial Ischemia: Pathophysiology and Perioperative Management

Anders G. Hedman

I. Introduction 75
 A. Type I Silent Myocardial Ischemia 75
 B. Type II Silent Myocardial Ischemia 76
 C. Type III Silent Myocardial Ischemia 76
II. Pathophysiology of Silent Myocardial Ischemia 76
 A. Global Deficiency in Pain Perception 76
 B. Anatomic Changes in Pain Receptors and Nerves 77
 C. Quantitative Theory of Silent Myocardial Ischemia 77
III. Detection of Silent Myocardial Ischemia 79
Contents

IV. Which Laboratory Methods Should Be Used for Screening Purposes? 80
 A. Exercise Stress Test 80
 B. Thallium-201 Dipyridamole Myocardial Imaging 81
 C. Ambulatory Long-Term Electrocardiographic Monitoring of ST Segment 81
V. Perioperative Medical Management of Silent Myocardial Ischemia 82
 A. Nitrates 84
 B. α-Adrenergic Blockers 84
 C. β-Adrenergic Blockers 84
 D. Calcium Antagonists 84
 E. Surgery and Angioplasty 85
VI. Summary 85
 References 85

Effect of Halothane on Sarcolemmal Calcium Channels during Myocardial Ischemia and Reperfusion
Benjamin Drenger, Yehuda Ginosar, and Yaacov Gozal

I. Introduction 89
II. Canine Model for Myocardial Ischemia and Reperfusion 90
III. Isolation of Sarcolemma-Enriched Preparation 92
IV. Binding Capacity of Isradipine 92
V. Summary 95
 References 95

Myocardial Ischemic Preconditioning
Donna M. Van Winkle, Grace L. Chien, and Richard F. Davis

I. Introduction 99
II. Myocardial Ischemia 100
III. Effects on Infarct Size 103
IV. Discussion 106
 References 107

Effects of Hypoxia/Reoxygenation on Intracellular Calcium Ion Homeostasis in Ventricular Myocytes during Halothane Exposure
Paul R. Knight, Mitchell D. Smith, and Bruce A. Davidson

I. Introduction 109
II. Intracellular Calcium Measurements 111
 A. Preparation of Ventricular Myocytes 111
 B. Measurement of Intracellular Calcium-Ion Concentration 112
III. Effects of Hypoxia, with or without Halothane, on Myocyte Morphology 113
IV. Effects of Hypoxia, with or without Halothane, on Intracellular Calcium 114
V. Effects of Hypoxia, with or without Halothane, on Electrically Induced Calcium Transients 116
VI. Effects of Hypoxia, with or without Halothane, on Caffeine-Induced Calcium Transients 117
VII. Discussion 117
References 122

Mechanical Consequences of Calcium Channel Modulation during Volatile Anesthetic-Induced Left Ventricular Systolic and Diastolic Dysfunction
Paul S. Pagel and David C. Warltier

I. Introduction 125
II. Materials and Methods 127
A. Nifedipine 127
B. Bay k 8644 128
C. Calculation of Indices of Systolic and Diastolic Left Ventricular Function 129
D. Statistics 130
III. Effects of Anesthetics and Calcium Channel Modulation 130
IV. Discussion 135
References 139

Anesthetic Actions on Calcium Uptake and Calcium-Dependent Adenosine Triphosphatase Activity of Cardiac Sarcoplasmic Reticulum
Ning Miao, Martha J. Frazer, and Carl Lynch III

I. Introduction 145
II. Sarcoplasmic Reticulum 147
A. Preparation of Cardiac Sarcoplasmic Reticulum 147
B. Calcium Uptake Measurement 148
C. Phosphate Production Measurement 149
D. Reagents and Anesthetic Administration 149
III. Calcium Uptake and ATPase Activity 150
IV. Discussion 156
A. Control Behavior 157
B. Anesthetic Effects 159
References 162
Interaction of Anesthetics and Catecholamines on Conduction in the Canine His–Purkinje System

Lawrence A. Turner, Sanja Vodanovic, and Zeljko J. Bosnjak

I. Introduction 167
II. Catecholamine–Anesthetic Interaction 168
III. Summary 180
References 181

Anesthetics, Catecholamines, and Ouabain on Automaticity of Primary and Secondary Pacemakers

John L. Atlee III, Martin N. Vicenzi, Harvey J. Woehlck, and Zeljko J. Bosnjak

I. Introduction 185
II. Isolated and Chronic Atrial Preparations 186
 A. Canine Right Atrial Preparation 187
 B. Chronically Instrumented Dogs 188
III. Anesthetic Interactions with Ouabain and Catecholamines 190
 A. Canine Right Atrial Preparation 190
 B. Chronically Instrumented Dogs 193
IV. Discussion 197
 A. Experiments in Isolated Hearts 198
 B. Experiments in Intact Hearts 200
V. Conclusions 203
VI. Future Directions 203
References 203

The Role of L-Type Voltage-Dependent Calcium Channels in Anesthetic Depression of Contractility

Thomas J. J. Blanck, D. L. Lee, S. Yasukochi, C. Hollmann, and J. Zhang

I. Introduction 207
II. Isolated Heart Preparation 210
III. Effects of Anesthetics on Isradipine Binding 211
IV. Discussion 213
References 214
Contents

Effects of Inhibition of Transsarcolemmal Calcium Influx on Content and Releasability of Calcium Stored in Sarcoplasmic Reticulum of Intact Myocardium

Hirochika Komai and Ben F. Rusy

I. Introduction 215
II. Isolated Papillary Muscle Preparation 216
III. Calcium Influx and Release 216
IV. Discussion 220
References 220

Arrhythmogenic Effect of Inhalation Anesthetics: Biochemical Heterogeneity between Conduction and Contractile Systems and Protein Unfolding

Issaku Ueda and Jang-Shing Chiou

I. Introduction 223
II. Cyclic AMP and the Conduction System 224
III. Myocardial Sensitizing Agents and Phosphodiesterase 225
IV. Mode of Anesthetic–Protein Interaction 226
V. Unfolding of Proteins 228
VI. Specific Binding: Lack of Definition 231
References 232

Part II
Coronary Circulation

Potassium Channel Current and Coronary Vasodilatation by Volatile Anesthetics

Nediljka Buljubasic, Jure Marijic, and Zeljko J. Bosnjak

I. Introduction 235
II. Isolated Vessel Ring Experiments 236
III. Patch Clamp Experiments 238
IV. Effects of Anesthetics on Isolated Coronary Vessels 239
V. Effects of Anesthetics on Whole-Cell Potassium Current 241
VI. Effects of Anesthetics on Single Potassium Channel Current 243
VII. Discussion 248
References 251
Potassium Channel Opening and Coronary Vasodilation by Halothane

D. R. Larach, H. G. Schuler, K. A. Zangari, and R. L. McCann

I. Introduction 253
II. Isolated Coronary Vessel Preparation 254
III. Effects of Endothelin 258
IV. Effects of Methacholine 260
 A. Endothelium-Denuded Rings 260
 B. Endothelium-Intact Rings 261
V. Effects of Potassium 263
VI. Discussion 263
References 266

Volatile Anesthetics and Coronary Collateral Circulation

Judy R. Kersten, J. Craig Hartman, Paul S. Pagel, and David C. Warltier

I. Introduction 269
II. Chronic Animal Instrumentation 270
III. Regional Myocardial Function and Perfusion 271
IV. Coronary Steal Prone Anatomy Model 273
V. Hemodynamic Effects of Isoflurane, Sevoflurane, and Adenosine 275
VI. Regional Myocardial Perfusion: Isoflurane, Sevoflurane, and Adenosine 278
VII. Discussion 280
References 283

Myocardial Oxygen Supply—Demand Relations during Isovolemic Hemodilution

George J. Crystal

I. Introduction 285
II. Experimental Studies 286
 A. Limit to Cardiac Compensation during Isovolemic Hemodilution: Influence of Coronary Stenosis 286
 B. Comparison of Effects of Isovolemic Hemodilution in Right and Left Ventricles 300
 C. Cardiac Effects of Combined Isovolemic Hemodilution and Controlled Hypotension 308
III. Summary 311
References 311
Part III
Cellular Targets

Plasma Membrane Ca\(^{2+}\)-ATPase as a Target for Volatile Anesthetics
Danuta Kosk-Kosicka

I. Introduction 313
II. Isolation and Activity Assay of Ca\(^{2+}\)-ATPase 315
III. Effects of Anesthetics 316
IV. Discussion 320
References 321

Enhancement of Halothane Action at the Ryanodine Receptor by Unsaturated Fatty Acids
Jeffrey E. Fletcher and Vincent E. Welter

I. Introduction 323
II. Calcium Efflux 324
III. Calcium Release from Heavy Sarcoplasmic Reticulum Fraction 325
 A. Effects of Fatty Acids in Absence of Halothane in Rat Cardiac Muscle 325
 B. Interaction between Fatty Acids and Halothane in Rat Cardiac Muscle 325
 C. Displacement of Fatty Acids from Binding Sites by Halothane 326
IV. Discussion 328
References 330

Adrenergic Receptors: Unique Localization in Human Tissues
Debra A. Schwilln

I. Introduction 333
II. Methods Used to Study Receptor Distribution 337
III. Localization of Receptors in Human Tissue 338
IV. Summary 340
References 341

Volatile Anesthetic Effects on Inositol Triphosphate-Gated Intracellular Calcium Stores in GH\(_3\) Cells
Alex S. Evers and M. Delawar Hossain

I. Introduction 343
II. Intracellular Calcium Measurements 344
III. Effects of Anesthetics 345
 A. TRH-Stimulated Inositol Phosphate Accumulation 345
 B. Effects of Halothane on Resting Intracellular Calcium 345
 C. Effects of Halothane on TRH-Stimulated Increases in Intracellular Calcium 346
 D. Mechanism of Halothane Inhibition of Peak Intracellular Calcium Responses to TRH 347
 E. Effects of Isoflurane and Octanol on Peak Intracellular Calcium Response to TRH 349

IV. Summary 349
References 350

Part IV
Reflex Regulation

Differential Control of Blood Pressure by Two Subtypes of Carotid Baroreceptors
Jeanne L. Seagard

I. Introduction 351
II. Carotid Baroreceptors 353
 A. Anodal Block 354
 B. Anesthetic Block 355
 C. Baroreceptor Activation 355
III. Carotid Sinus Nerve Activity 357
 A. Blocking of Normal Activity by Anodal Current 357
 B. Block of Nerve Activity by Anesthetic 359
IV. Discussion 361
V. Anesthetic Implications 364
References 366

Sympathetic Activation with Desflurane in Humans
Thomas J. Ebert and Michael Muzi

I. Introduction 369
II. Sympathetic Microneurography 370
III. Anesthetics and Sympathetic Activation 371
IV. Discussion 375
 A. Induction Responses 375
 B. Steady-State Responses 376
 C. Transition Responses 376
Randomized, Prospective Comparison of Halothane, Isoflurane, and Enflurane on Baroreflex Control of Heart Rate in Humans

Michael Muzi and Thomas J. Ebert

I. Introduction 379
II. Baroreflex Function in Humans 380
III. Effects of Anesthetics 381
IV. Discussion 383
 References 386

Baroreflex Modulation by Isoflurane Anesthesia in Normotensive and Chronically Hypertensive Rabbits

Leonard B. Bell

I. Introduction 389
II. Chronically Hypertensive Rabbit Model and Experimental Protocol 390
III. Effect of Isoflurane on Arterial Pressure–Renal Sympathetic Nerve Activity and Arterial Pressure–Heart Rate Barocurves 394
 A. Mean Arterial Pressure–Renal Sympathetic Nerve Activity Baroreflexes 396
 B. Mean Arterial Pressure–Heart Rate Baroreflexes 398
IV. Discussion 401
 A. Effect of Isoflurane Anesthesia on Arterial Pressure–Heart Rate Baroreflex 401
 B. Effect of Isoflurane Anesthesia on Arterial Pressure–Renal Sympathetic Nerve Activity Baroreflex 402
 C. Effect of Isoflurane on Steady-State Resting Levels of Renal Sympathetic Nerve Activity and Heart Rate 402
 D. Effect of Chronic Hypertension on Mean Arterial Pressure–Heart Rate Baroreflex 402
 E. Effect of Chronic Hypertension on Mean Arterial Pressure–Renal Sympathetic Nerve Activity Baroreflex 403
 F. Effect of Chronic Hypertension on Steady-State Resting Levels of Renal Sympathetic Nerve Activity and Heart Rate 404
 G. Interaction of Isoflurane Anesthesia and Chronic Hypertension on Baroreflex Function 405
 References 406
Part V
Peripheral Circulation

Effects of Isoflurane on Regulation of Capacitance Vessels under Normotensive and Chronically Hypertensive Conditions
Thomas A. Stekiel, Leonard B. Bell, Zeljko J. Bosnjak, and John P. Kampine

I. Introduction 409
II. Hypertensive Rabbit Preparation 411
III. Mesenteric Reflex Measurements 411
IV. Circulatory Responses to Baroreflex and Chemoreflex Responses in Normotensive and Hypertensive Animals 413
V. Effects of Isoflurane on Hypoxia and Baroreflex-Mediated Responses 419
VI. Effects of Isoflurane on Prestimulation Baseline Measurements 421
VII. Discussion 421
References 428

Effect of Volatile Anesthetics on Baroreflex Control of Mesenteric Venous Capacitance
J. Bruce McCallum, Thomas A. Stekiel, Anna Stadnicka, Zeljko J. Bosnjak, and John P. Kampine

I. Introduction 431
II. Measurement of Venous Capacitance 432
III. Response to Baroreceptor Stimulaton 434
IV. Response to Electric Stimulation 440
V. Discussion 440
References 446

Effect of General Anesthesia on Modulation of Sympathetic Nervous System Function
Margaret Wood

I. Introduction 449
II. Effect of Intravenous and Inhalational Anesthetics on Norepinephrine Kinetics 450
III. β-Adrenergic Receptor-Mediated Release of Norepinephrine 454
Inhibition of Nitric Oxide-Dependent Vasodilatation by Halogenated Anesthetics
Ming Jing, Jayne L. Hart, Saiid Bina, and Sheila M. Muldoon

I. Introduction 459
II. Methods 460
III. Effects of Anesthetics on Endothelium-Dependent Relaxations of Isolated Blood Vessels 462
IV. Effects of Halothane and Isoflurane on Nitric Oxide-, Nitroglycerin-, and Carbon Monoxide-Induced Relaxations of Rat Aorta 463
V. Effects of Halothane on Nitric Oxide-Stimulated Cyclic GMP 464
VI. Interactions of Halothane and Nitric Oxide in Absence of Tissues 465
VII. Discussion 467
References 469

Effects of Epidural Anesthesia on Splanchnic Capacitance
Quinn H. Hogan, Anna Stadnicka, and John P. Kampine

I. Introduction 471
II. Epidural Anesthesia 472
III. Splanchnic Capacitance 473
IV. Summary 482
References 482

Anesthetic Modulation of Pulmonary Vascular Regulation
Paul A. Murray

I. Introduction 485
II. Measurement of Pulmonary Vasoregulation 486
A. Surgical Preparation for Chronic Instrumentation 486
B. Physiological Measurements 486
C. Generation of Pulmonary Vascular Pressure–Flow Plots 487
D. General Protocols 487
III. Anesthesia and Pulmonary Vasoregulation 488
A. Effects of Anesthesia on Baseline Pressure–Flow Relationship 488
B. Anesthesia and Autonomic Nervous System Regulation of Pressure–Flow Relationship 490
C. Anesthesia and Humoral Regulation of Pressure-Flow Relationship 493
D. Anesthesia and Regulation of the Pressure-Flow Relationship by Cyclooxygenase Metabolites 494
E. Anesthesia and Pulmonary Vascular Response to Hypoperfusion 495
F. Anesthesia and Endothelium-Dependent and -Independent Pulmonary Vasodilation 498

IV. Summary 502
References 503

Pulmonary Mechanics Changes Associated with Cardiac Surgery

Ron Dueck

I. Introduction 505
II. Dynamic Lung Compliance 506
III. Effects of Sternotomy 506
IV. Discussion 509
References 512

Inhaled Nitric Oxide in Adult Respiratory Distress Syndrome and Other Lung Diseases

Warren M. Zapol and William E. Hurford

I. Introduction 513
II. Pulmonary Hypertension in Adult Respiratory Distress Syndrome 514
III. Nitric Oxide 514
IV. Rationale for Use of Inhaled Nitric Oxide in Patients with Adult Respiratory Distress Syndrome 515
V. Laboratory Studies of Inhaled Nitric Oxide 515
A. Acute Pulmonary Hypertension 515
B. Bronchodilation 518
VI. Clinical Studies of Nitric Oxide Inhalation in Adult Respiratory Distress Syndrome 519
VII. Inhaled Nitric Oxide in Other Lung Diseases Associated with Pulmonary Hypertension 522
A. Neonatal Respiratory Failure 522
B. Chronic Pulmonary Hypertension 523
C. Congenital and Acquired Heart Disease 523
VIII. Toxicity of Nitric Oxide 524
IX. Guidelines for Nitric Oxide Inhalation 525
References 527
First Pass Uptake in the Human Lung of Drugs Used during Anesthesia
David L. Roerig, Susan B. Ahlf, Christopher A. Dawson, John H. Linehan, and John P. Kampine

I. Introduction 531
II. First Pass Drug Uptake in Human Lung 532
III. Factors Affecting Pulmonary Drug Uptake 538
 A. Saturability 538
 B. Plasma Protein Binding 542
 C. Effect of Cardiac Output 545
IV. Conclusions 547
References 547

Lactic Acidosis and pH on the Cardiovascular System
Yuguang Huang, James B. Yee, Wang-Hin Yip, and K. C. Wong

I. Introduction 551
II. Induction of Lactic Acidosis 552
III. Cardiovascular Effects of Acute Acidosis 554
IV. Discussion 562
References 564

Part VI
Cerebral Circulation

Role of Oxygen Free Radicals and Lipid Peroxidation in Cerebral Reperfusion Injury
Laurel E. Moore and Richard J. Traystman

I. Introduction 565
II. Free Radicals 566
III. Mechanisms of Brain Injury 567
IV. Potential Therapeutic Agents 568
V. Conclusion 571
References 572
Effects of Volatile Anesthetics on Cerebrocortical Laser Doppler Flow: Hyperemia, Autoregulation, Carbon Dioxide Response, Flow Oscillations, and Role of Nitric Oxide

Antal G. Hudetz, Joseph G. Lee, Jeremy J. Smith, Zeljko J. Bosnjak, and John P. Kampine

I. Introduction 577
II. Measurement of Laser Doppler Flow 579
III. Resting Flow 581
IV. Autoregulation 582
V. Hypocapnia and Hypercapnia 584
VI. Role of Nitric Oxide 586
VII. Spontaneous Flow Oscillations 588
VIII. Conclusions 591
References 591

Cerebral Blood Flow during Isovolemic Hemodilution: Mechanistic Observations

Michael M. Todd

I. Introduction 595
II. Influence of Hemodilution on Cerebral Blood Volume 596
III. Influence of Focal Cortical Brain Lesion on Regional Cerebral Blood Flow Response to Hemodilution 597
IV. Comparison of Cerebrovascular and Metabolic Changes Produced by Hypoxia and Hemodilution 599
V. Role of Nitric Oxide in the Cerebral Blood Flow Response to Hemodilution 602
VI. Discussion 603
References 603

Cerebral Physiology during Cardiopulmonary Bypass: Pulsatile versus Nonpulsatile Flow

Brad Hindman

I. Introduction 607
II. Pulsatile versus Nonpulsatile Bypass 610
III. Influence of Arterial Pressure Waveform 611
IV. Summary 614
References 614
Anesthetic Actions of Cardiovascular Control Mechanisms in the Central Nervous System
William T. Schmeling and Neil E. Farber

I. Introduction 617
II. Studies Performed in Cats 619
 A. Preparation for Acute Studies 619
 B. Preparation for Studies of Intermediolateral Cell Column Evoked Potentials 620
III. Studies in Mongrel Dogs 621
IV. Central Nervous System Pressor Site Responses in Cats and Intermediolateral Cell Column Evoked Potential 623
V. Anesthetic Responses in Dogs 625
VI. Histological Documentation of Electrode Sites 634
VII. Discussion 634
References 639

Index 643
Contents of Previous Volumes 655